膜生物反应器污染及防控方法研究进展

高 放1,2,3* 马 林2 霍 涛4 刘 洋2 李玉平3 邢林林2 史彦伟1

(1.北控水务(中国)投资有限公司,北京 100102; 2.北京北华中清环境工程技术有限公司,北京 100176;3.中国科学院过程工程研究所,北京 100190; 4.北京市大兴区水务局,北京 102600)

摘要:膜生物反应器因其在工业废水处理领域的技术优势已引起人们的广泛关注。但由于工业水体中繁杂污染物形成的复杂膜污染,以及对应高能耗的运行模式,制约了MBR在工业废水处理中的应用。因此,从MBR的污染机制和防控方法角度,综述了近年来国内外关于MBR膜污染形成的影响因素以及相关污染机制。并在污染机制的基础上,探讨了对应的防控方法,重点阐述了改善活性污泥性质促进膜污染防控的相关研究。

关键词:MBR反应器;膜污染;污染防控;活性污泥性质

*第一作者、通信作者:高放(1987-),男,研究生,高级工程师,主要研究方向为煤化工废水零排放、污水处理厂提标改造。gaofang@bewg.net.cn

0 引 言

膜生物反应器(MBR)是通过膜将活性污泥和水分离的核心技术,自20世纪90年代起开始作为水资源再利用的一种新工艺。经过近30年的发展,MBR技术广泛应用于市政污水处理、垃圾渗滤液、医院废水、养殖废水以及环境水体修复等方面[1,2]。因MBR技术具有占地面积小、出水水质优良稳定,以及对难降解有机物处理效率高等优点,常用于我国工业废水处理[3]

但是,工业废水中复杂的污染物、高污泥浓度的运行模式,常导致更为严重的膜污染现象发生;另外,MBR采用过曝气模式来缓解污染,这势必产生更高能耗,同时也不利于系统内微生物的生长;这些问题均阻碍了MBR技术在工业废水处理的推广应用[4]。因此,基于上述问题,对MBR应用于不同领域废水处理中的膜污染行为和机制进行探讨,并在此基础上,从不同角度提出了相应解决措施。

1 影响MBR膜污染因素

膜污染是伴随膜分离操作过程中出现的、难以避免的影响膜性能的现象[5]。膜污染是指污染物吸附、聚集在膜表面或者膜孔内,以及其所引起的浓差极化。膜污染的出现不仅降低膜通量,同时改变了膜对溶质(产品、污染物)的截留、分离能力。

1.1 污染物

MBR 工艺,相对于其他分离膜工艺(超滤、纳滤、反渗透、正渗透及膜蒸馏等),导致膜污染的物质除了水体中无机类、有机类以及聚合胶体等以外,其膜组件置于含有高浓度悬浮固体浓度(MLSS)的混合液,也是造成膜污染的关键因素之一。MBR实际运行中,混合液的组成非常复杂,包含固体颗粒、胶体粒子、溶解性大分子有机物(SMP)、微生物及其代谢产物(EPS)等[6-9],这些污染物与膜之间通过复杂的理化作用[10],造成并加剧膜污染。

无机盐导致膜污堵并形成污染层,无机盐的种类(价态)以及离子强度都会改变MBR膜的污染行为[11]。Miao等[12]采用正渗透(FO)、MBR组合工艺处理废水中的污染物,发现由Ca、Mg、Al、Si、Fe和P等组成的无机污染物占据总水力阻力的60%。此外,无机盐的存在,尤其是高价态阳离子(如二价的Ca2+、Mg2+和三价的Fe3+、Al3+)存在,可通过改变微生物群落结构从而改变MBR膜上的污染机制。另外,ZHOU等[13]考察AO-MBR工艺处理垃圾浸出液时发现,长时间运行(实验为期90 d),MBR膜表面会形成含有Fe、Al、Ca、Mg、Si等无机盐构成的污染层,其中Al-Si晶体在污染层中占据主要成分。

相对于无机盐,有机污染物通常对膜污染的贡献更大,且机制更加复杂[14-16]。Liu等[17]利用EEM荧光光谱探究有机污染物在MBR运行过程中的污染行为,经测定膜表面的污染物有4种特征峰,其中2种为类蛋白质物质,主要是EPS,另外2种为类腐殖质物质。Defrance等[18]在研究MBR处理市政污水时,发现水体中悬浮物浓度稳定在10000 mg/L,其MBR系统中的混合液是非牛顿流体。分析混合液结果发现,其中悬浮物(SS)、胶体以及可溶性有机物对膜污染的贡献分别为65%、30%和5%。并且,微生物浓度从2000 mg/L增加到6000 mg/L,其膜通量无明显下降。但是,有研究显示在中试中,MLSS的增加会导致混合液中EPS和SMP的增加,这些均会加剧MBR膜的污染行为[19]。另外,针对MBR膜上的生物污染,有研究者研究了季铵盐类化合物(如苯扎氯铵)对MBR短时和长时运行下的污染行为,表明苯扎氯铵降低了微生物活性,从而加剧了膜污染[20]

另外, INABA等[21]利用无损膜的表征方法,采用共聚焦显微镜和16S rRNA基因序列对MBR处理养殖废水过程中活性污泥和膜上微生物群进行分析,结果显示,胺类EPS是构成膜污染的主要物质,且污泥中的生物群落不同于膜污染层中的生物群落[22]。Lee等[23]考察微生物絮体和悬浮液在不同污泥停留时间(SRT)对膜污染的影响,随着SRT从20 d增加至60 d,微生物絮体和悬浮液占污染阻力比例从37%下降到29%,这表明MBR膜污染主导因素是微生物活性和疏水性。另外,Al-Halbouni等[24]考察了中试规模下SRT和季节温度对EPS的影响,较短的SRT时污泥的可沉降性、过滤性以及脱水能力均比长SRT时的污泥性能差。在夏季混合液中EPS的浓度只有冬季时的1/3。Herrera-Robledo[25]研究证明,原水中壳聚糖、蛋白质以及CaCO3的存在会影响EPS的分子结构,从而改变污染层的形成和压缩度。Teng等[26]从胶体污染层过滤阻力和胶体本身弹性的角度,研究污染层的形成对MBR膜过滤分离的影响。

1.2 操作条件

操作条件,如进水pH、HRT、膜表面流速(流型)、SRT、曝气强度以及药剂的投加等均会对MBR膜污染行为产生影响[27-29]

Kunacheva等[30]考察了pH对于MBR分离和污染行为。pH=5时,系统内糖类物质(30 k~200 kDa)的含量达到峰值;当pH=11时,类蛋白质物质(1500 kDa~0.2 μm)的含量更高。实验结果显示,高pH时形成粒径为1~5 μm的胶体会引起更严重的膜污染。另外,有研究人员利用MBR技术处理低浓度和碱度的市政废水,结果显示,较低的BOD5/TN和碱度对MBR的处理效率和膜通量均有较大的影响,同时低碱度和pH会加剧膜表面污染层的形成[31]

Tardieu等[32]针对MBR膜表面流速和流型进行对比研究,结果显示,在低流速状态(0.5 m/s,Re≈1200)下,相比于常规流速状态(4 m/s,Re≈9000),混合液中的悬浮物会快速积聚在膜表面,致使跨膜压差线性增长。但是,有研究表明过强的剪切力同样会加剧膜的污染。Kim等[33]考察了使用离心泵和旋转泵对混合液剪切力的影响,在强作用力下会破坏污泥结构,导致微生物释放更多的EPS加速膜污染。Chen等[34]在研究不同浓度MLSS、总有机碳(TOC)以及交错流速对膜污染的综合影响过程中发现,TOC和膜污染线性相关;交错流速的增加有利于减轻膜表面污染。同时,对于MBR分离工艺,其临界膜通量对膜污染行为有着重要影响[35]

Psoch等[36]利用MBR处理制糖废水,发现加强曝气可以有效减轻膜污染,在曝气作用下MBR膜通量是无曝气作用时的2倍以上。同时,实验发现气水比维持在0.4~0.5,其膜上剪切作用力最强,膜阻力减少近30%。为了进一步研究气冲对膜污染控制的影响,Wang等[37]构建气泡尺寸、临界通量与污染行为的联系,通过高速摄像机记录气泡在MBR系统中的运动轨迹,得出气泡尺寸对临界通量的影响。另外,Díaz等[38]研究低溶解氧条件下MBR的运行和污染行为过程中发现,低溶解氧(0.25 mg/L以下)不利于生物絮体的形成和过滤性,从而增大膜表面污染层的阻力。随着DO的增大,不仅有利于污染膜的通量恢复,而且可以增大MBR膜的临界通量。

Pollice等[39]研究了SRT和产水抽吸时间(CST)对MBR运行的影响,随着SRT的延长,反应器中的生物活性呈现对数增长。SRT为40~80 d时,MBR系统趋于稳定,且每2月对MBR膜清洗1次。另外,除改变产水抽吸时间外,产水方式的改变也可有效降低膜污染的形成。采用短时间大流速的产水方式,可大幅降低膜表面污染层的形成,从而阻止跨膜压差的升高[40]。El-Fadel等[41]针对不同SRT对MBR处理垃圾渗滤液过程中的污染行为进行探讨,对于平板膜和中空纤维膜,SRT为5~20 d时,其对废水中的有机物均保持较高的去除效率。但是SRT的降低不利于2类膜的污染控制,其对中空纤维膜的影响大于对平板膜的影响。另外,Yu等[42]利用MBR处理炼油厂废水,考察了SRT对膜上生物群落和污染的影响,结果显示,在10~60 d的SRT范围内,污染最严重时发生在SRT=10 d左右,而在30 d时污染最轻。

1.3 MBR膜材质和组件结构

膜材质和膜组件结构,如膜表面亲疏水性、粗糙度、表面形貌、膜孔以及膜组件形式均会影响MBR分离过程中的膜污染行为[43-45]

Hong等[46]以制糖废水作为处理目标,对比微滤膜和超滤膜、平板膜和中空纤维膜的分离、污染行为,结果表明,膜孔径和膜结构对膜污染有重要影响。Hong等[47]针对2种不同粗糙度的膜表面和污染颗粒作用力进行定量分析。另外,针对SMP在MBR膜上亲水和疏水孔径上的吸附、积聚行为进行了对比研究[48]。为进一步研究膜表面粗糙度对污染的影响机制,Cai等[49]针对污染颗粒物表面和膜表面的粗糙度进行定量分析,并通过改进的双变量Weierstrass-Mandelbrot函数进行模拟,推导计算膜污染行为和粗糙度之间的量化关系。Wu等[50]通过计算流体动力学,对工业级MBR膜组件的填充形式进行优化,研究膜组件填充率对膜污染的影响。

2 MBR膜污染防控方法

MBR系统污染防控方法主要包括预处理、污染膜清洗以及改善活性污泥性质。

2.1 预处理

目前,污水处理厂MBR工艺常规预处理方法是在进水处设置细格栅,如格栅、楔形丝筛以及多孔板等。梁汀等[51]研究表明,对于平板膜系统,其预处理常选用间隙为3 mm细格栅;对于中空纤维膜系统,一般选用<1 mm的细格栅。除颗粒态污染物外,原水中还包括油类污染物、悬浮物等。黄刚华等[52,53]在MBR工艺前,通过气浮、絮凝等方式可有效去除此类污染。针对预处理,研究工作主要集中在新工艺的研发、药剂改性及改进工艺的耦合等方面。化学絮凝作为MBR的预处理工艺,有学者对其减轻膜污染的作用和机制进行了广泛研究。Zhang等[54]在MBR处理含油砂废水时,采用臭氧预氧化的预处理方式,可有效减轻MBR的污染程度并延缓污染现象的发生。混合液中残留的臭氧在一定程度上可以改善活性污泥的微生物种群和污泥结构,从而减轻膜的污染程度。

2.2 污染膜清洗

对已形成污染的膜进行清洗,通常采用气冲、反洗和化学药剂清洗等方式,可有效减轻膜污染[55-57]

Ruigómez等[58]在常规气洗污染MBR膜的基础上,加装旋转装置,此方法可有效降低膜表面污染增加的阻力,其改进后所用气量只有常规气量的65%,有效降低了由于曝气产生的能耗。

Cai等[59]利用NaClO溶液对污染的MBR膜进行在线药剂清洗时,发现NaClO可有效降低微生物活性。清洗过程中微生物细胞溶解,从而降低了活性污泥疏水性并释放EPS。因此,高浓度的NaClO清洗后的MBR膜更易受微生物的污染。Han等[60]对EPS功能团在不同浓度NaClO环境中的变化进行研究发现,NaClO可促使多糖氧化、氨基酸变性以及破坏蛋白质的二级结构,同时降低细胞内的活性氧自由基,在外界直接作用和内部生物作用下,破坏微生物细胞完整性和EPS的吸附能力。NaOH溶液同样作为MBR污染膜离线/在线清洗的主要清洗药剂之一。Mei等[61]对不同NaOH浓度药剂在清洗污染后膜片过程进行对比研究。在离线状态下,0.05~1.30 mmol/L的NaOH对污染膜的清洗效果较好,但浓度超过1.30 mmol/L不仅不利于膜的清洗,并会对膜片造成破坏。而在线状态下,10~20 mmol/L的NaOH对污染膜的清洗效果较好。

2.3 改善活性污泥性质

此外,向MBR系统内投加药剂,如活性碳、絮凝剂、生物载体及吸附剂等,也会改善MBR的运行效果和污染行为[62]

Mertens等[63]利用磁场诱导膜表面振动技术,在MBR组件上增加磁感应装置,利用变换的磁场使膜组件发生振动。实验结果显示,振动频率控制在15 Hz时,膜污染可以减轻60%,且孔径和孔隙率在磁场作用下都有一定改善。除外加磁场外,在MBR系统加入电场也可有效控制MBR膜污染,Yang等[64]实验研究表明,在MBR上加入-1.2 V电压,相对于未加电压的对照组,其改进后系统(E-MBR)对有机物的去除效率提高1.4~3.3倍,同时,电场的加入有效控制了过膜压差的增大。

Villamil等[65]研究了不同类型的活性炭对于MBR膜污染行为的影响,将活性污泥制备出的粉末活性炭(B-PAC)投加到MBR系统后,其过膜压差(TMP)在稳定运行9 d后才开始上升,而空白组的TMP在运行第2天便明显增大。同时,B-PAC对系统提供的额外剪切力也有助于MBR膜通量的提升。Wang等[66]将颗粒活性炭(GAC)投加到MBR内,系统研究了膜表面流速和GAC浓度等对MBR处理效果和膜污染的影响。除投加活性炭外,向MBR系统中加入适量的混凝剂也有助于提高MBR膜对SMP的抗污染能力,研究显示,Fe基无机混凝剂可明显缓解MBR膜的可逆和不可逆污染[67]。Zhang等[68]在向MBR反应器内分别投加不同的粉末活性碳、颗粒活性碳以及阳离子聚合物,结果表明,投加上述改性剂可有效降低混合液中的颗粒、胶体和SMP等,其中FeCl3的加入不仅可以有效降低污染层厚度,同时可以增大胶体尺寸。另外,Hazrati等[69]向MBR系统内投加纳米级沸石,分别对颗粒粒径、SMP以及EPS进行分析,并且对污染层进行表征,发现沸石的加入减轻了膜污染,并有效降低过膜压差。沸石对混合液中的蛋白质类和富里酸类污染物的减轻效果更明显。除上述药剂对膜污染行为的影响研究外,磁粉作为混合液性质改性剂对膜污染行为的减轻作用也有着广泛探究[70]

ErgöN-Can等[71]采用群体感应淬灭技术控制MBR膜污染,利用1种新型的旋转微生物载体作为菌剂的固定媒介,加入MBR系统,结果显示:生物载体的加入可有效降低TMP的增长速率:这一方面是由于载体会促进膜表面剪切力,另一方面是载体会影响微生物的多样性。Iorhemen等[72]利用群体感应淬灭技术,结合颗粒介质和颗粒污泥对MBR膜污染的缓解作用进行研究,结果显示,颗粒介质的加入可提高20%~30%的膜通量,并减少50%的曝气量。Xiao等[73]采用群体感应淬灭技术与颗粒活性炭技术相结合,结果显示,该技术不仅有效提高了MBR对于医药废水的处理效率,同时由于活性污泥粒径的增大,有效降低了在膜孔内发生污泥污堵的风险。

Tang等[74]利用食物残渣的发酵废水作为接种液,提高MBR对于COD和NH3-N的去除效果。实验结果显示,COD和NH3-N去除率提高了44%~67%。微生物代谢能力增强,有效改善微生物群落的同时,也有利于减轻MBR的膜污染。此外,SUN等[75]向MBR系统中引入藻类,通过藻类微生物和活性污泥的协同作用,一方面增强MBR对于COD、NH3-N、TN以及PO3-4-P等去除效率;另一方面,接种藻类可以抑制丝状菌的繁殖并降低Zeta电位,从而有效降低膜污染的形成[76,77]

3 结 论

本文从不同角度对MBR运行过程中的污染成因、机制进行了深入讨论,但是对膜污染形成的机制以及主导因素尚未彻底解析,甚至一些实验结论之间相悖。导致上述问题的主要原因是MBR处理的废水中污染物组成较为复杂,并且系统中存在的活性污泥会直接影响MBR膜的污染行为。缓解MBR膜污染程度,减少运行能耗同样是研究热点。虽然,对MBR膜进行改性是有效提高膜抗污染能力的根本方法,但是由于改性技术尚不成熟,很难在工业级大规模推广。膜在线/离线清洗存在不可避免的问题,如频繁清洗不仅会降低膜的产水效率,也会对膜造成不可逆的损伤。因此,改善混合液性质的方式,无论是从技术可行性,还是在工业级推广等方面具有较大优势,值得进行深度探索。

参考文献

[1] 赵维电, 王新华, 高宝玉. A/O-生物膜系统处理煤化工废水[J]. 环境工程学报, 2012, 6(10): 3481-3484.

[2] 徐莉莉, 孙硕, 王军, 等. 活性焦吸附对煤化工废水膜处理工艺的影响[J]. 环境工程学报, 2013, 7(10): 3827-3832.

[3] 冯一伟, 柴涛. 酸化-复合絮凝法预处理煤化工废水[J]. 环境工程学报, 2016, 10(3): 1310-1316.

[4] 赵国萍, 陈林华, 汤洁, 等. 接触氧化-水解酸化-缺氧-MBR处理煤制气废水[J]. 环境工程学报, 2016, 10(10): 5665-5670.

[5] CAMPO R, MITRA S, BELLA G D. Analysis of extracellular polymeric substances and membrane fouling of a MB-MBR treating shipboard slops[J]. Journal of Environmental Engineering, 2017, 143(9):1-7.

[6] KANG I J, YOON S H, LEE C H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor[J]. Water Research, 2002, 36(7): 1803-1873.

[7] LE-CLECH P, CHEN V, FANE T G. Fouling in membrane bioreactors used in wastewater treatment[J]. Journal of Membrane Science, 2006, 284(1/2): 17-53.

[8] TIAN Y, LI Z P, DING Y, et al. Identification of the change in fouling potential of soluble microbial products (SMP) in membrane bioreactor coupled with worm reactor[J]. Water Research, 2013, 47(6): 2015-2024.

[9] CAMPO R, CAPODICI M, BELLA G D, et al. The role of EPS in the foaming and fouling for a MBR operated in intermittent aeration conditions[J]. Biochemical Engineering Journal, 2017, 118: 41-52.

[10] SHEN Y X, ZHAO W T, XIAO K, et al. A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion[J]. Journal of Membrane Science, 2010, 346(1): 187-193.

[11] WANG F Y, ZHANG M J, PENG W, et al. Effects of ionic strength on membrane fouling in a membrane bioreactor[J]. Bioresource Technology, 2014, 156: 35-41.

[12] MIAO Y, GUO X C, JIANG W, et al. Mechanisms of microbial community structure and biofouling shifts under multivalent cations stress in membrane bioreactors[J]. Journal of Hazardous Materials, 2017, 327: 89-96.

[13] ZHOU L J, ZHUANG W Q, YE B, et al. Inorganic characteristics of cake layer in A/O MBR for anaerobically digested leachate from municipal solid waste incineration plant with MAP pretreatment[J]. Chemical Engineering Journal, 2017, 327: 71-78.

[14] JACQUIN C, GAMBIER N, LESAGE G, et al. New insight into fate and fouling behavior of bulk Dissolved Organic Matter (DOM) in a full-scale membrane bioreactor for domestic wastewater treatment[J]. Journal of Water Process Engineering, 2018, 22: 94-102.

[15] JACQUIN C, MONNOT M, HAMZA R, et al. Link between Dissolved Organic Matter transformation and process performance in a Membrane Bioreactor for urinary nitrogen stabilization[J]. Environmental Science: Water Research & Technology, 2018.

[16] JACQUIN C, TEYCHENE B, LEMEE L, et al. Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment[J]. Biochemical Engineering Journal, 2018, 132:169-181.

[17] LIU T, CHEN Z L, YU W Z, et al. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy[J]. Water Research, 2011, 45(5): 2111-2121.

[18] DEFRANCE L, JAFFRIN M Y, GUPTA B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology, 2000, 73(2): 105-112.

[19] YIGIT N O, HARMAN I, CIVELEKOGLU G, et al. Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions[J]. Desalination, 2008, 231(1): 124-132.

[20] CHEN M, ZHANG X R, WANG Z W, et al. Impacts of quaternary ammonium compounds on membrane bioreactor performance: acute and chronic responses of microorganisms[J]. Water Research, 2018, 134: 153-161.

[21] INABA T, HORI T, NAVARRO R R, et al. Revealing sludge and biofilm microbiomes in membrane bioreactor treating piggery wastewater by non-destructive microscopy and 16S rRNA gene sequencing[J]. Chemical Engineering Journal, 2018, 331: 75-83.

[22] TAKADA K, SHIBA T, YAMAGUCHI T, et al. Cake layer bacterial communities during different biofouling stages in full-scale membrane bioreactors[J]. Bioresource Technology, 2018, 259: 259-267.

[23] LEE W, KANG S, SHIN H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science, 2003, 216(1): 217-227.

[24] AL-HALBOUNI D, TRABER J, LYKO S, et al. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena[J]. Water Research, 2008, 42(6): 1475-1488.

[25] HERRERA-ROBLEDO M, ARENAS C, MORGAN-SAGASTUME J M, et al. Chitosan/albumin/CaCO3 as mimics for membrane bioreactor fouling: genesis of structural mineralized-EPS-building blocks and cake layer compressibility[J]. Chemosphere, 2011, 84(2): 191-198.

[26] TENG J H, SHEN L G, YU G Y, et al. Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor[J]. Bioresource Technology, 2018,257:39-46.

[27] ZONOOZI M H, MOGHADDAM M R A, MAKNOON R. Investigation of HRT effects on membrane fouling in sequencing batch membrane bioreactor with respect to batch filtration mode[J]. Environmental Progress & Sustainable Energy, 2017, 36(6):1785-1793.

[28] ZHANG S, ZUO X T, XIONG J, et al. Effect of powdered activated carbon dosage on sludge properties and membrane bioreactor performance in a hybrid MBR-PAC system[J]. Environmental Technology, 2017,40(9): 1156-1165.

[29] BERKESSA Y W, YAN B H, LI T F, et al. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration[J]. Bioresource Technology, 2018, 250: 281-289.

[30] KUNACHEVA C, SOH Y N A, STUCKEY D C. Effect of feed pH on reactor performance and production of soluble microbial products (SMPs) in a submerged anaerobic membrane bioreactor[J]. Chemical Engineering Journal, 2017, 320: 135-143.

[31] SILVA-TEIRA A, VZQUEZ-PADN J R, WEILER R, et al. Performance of a hybrid membrane bioreactor treating a low strength and alkalinity wastewater[J]. Process Biochemistry, 2018, 66: 176-182.

[32] TARDIEU E, GRASMICK A, GEAUGEY V, et al. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment[J]. Journal of Membrane Science, 1998, 147(1): 1-12.

[33] KIM J S, LEE C H, CHANG I S. Effect of pump shear on the performance of a crossflow membrane bioreactor[J]. Water Research, 2001, 35(9): 2137-2144.

[34] CHEN Z B, XIAO T T, HU D X, et al. The performance and membrane fouling rate of a pilot-scale anaerobic membrane bioreactor for treating antibiotic solvent wastewater under different cross flow velocity[J]. Water Research, 2018, 135: 288-301.

[35] RAVISHANKAR H, RODDICK F, NAVARATNA D, et al. Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system[J]. Journal of Environmental Management, 2018, 213: 168-179.

[36] PSOCH C, SCHIEWER S. Long-term study of an intermittent air sparged MBR for synthetic wastewater treatment[J]. Journal of Membrane Science, 2005, 260(1/2): 56-65.

[37] WANG J W, FANE A G, CHEW J W. Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants[J]. Journal of Membrane Science, 2017, 535: 279-293.

[38] DAZ O, GONZLEZ E, VERA L, et al. Fouling analysis and mitigation in a tertiary MBR operated under restricted aeration[J]. Journal of Membrane Science, 2017, 525: 368-377.

[39] POLLICE A, LAERA G, SATURNO D, et al. Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage[J]. Journal of Membrane Science, 2008, 317(1): 65-70.

[40] WU J, LE-CLECH P, STUETZ R M, et al. Novel filtration mode for fouling limitation in membrane bioreactors[J]. Water Research, 2008, 42(14): 3677-3684.

[41] EL-FADEL M, SLEEM F, HASHISHO J, et al. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate[J]. Waste Management, 2018, 73: 165-180.

[42] YU L Z, YANG Y H, YANG B, et al. Effects of solids retention time on the performance and microbial community structures in membrane bioreactors treating synthetic oil refinery wastewater[J]. Chemical Engineering Journal, 2018, 344: 462-468.

[43] FAN H J, XIAO K, MU S T, et al. Impact of membrane pore morphology on multi-cycle fouling and cleaning of hydrophobic and hydrophilic membranes during MBR operation[J]. Journal of Membrane Science, 2018, 556:312-320.

[44] KANG X, SHEN Y X, SHUAI L, et al. A systematic analysis of fouling evolution and irreversibility behaviors of MBR supernatant hydrophilic/hydrophobic fractions during microfiltration[J]. Journal of Membrane Science, 2014, 467: 206-216.

[45] GUO Y F, SUN P C, WEI J F. New insight into the fouling behavior of hydrophobic and hydrophilic polypropylene membranes in integrated membrane bioreactors[J]. Environmental Technology, 2017,39(24):3159-3168.

[46] HONG S P, BAE T H, TAK T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J]. Desalination, 2002, 143(3): 219-228.

[47] HONG H C, CAI X, SHEN L G, et al. Membrane fouling in a submerged membrane bioreactor: new method and its applications in interfacial interaction quantification[J]. Bioresource Technology, 2017, 241: 406-414.

[48] BANTI D C, SAMARAS P, TSIOPTSIAS C, et al. Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment[J]. Separation & Purification Technology, 2018, 202: 119-129.

[49] CAI X, SHEN L G, ZHANG M J, et al. Membrane fouling in a submerged membrane bioreactor: an unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces[J]. Bioresource Technology, 2017, 243: 1121-1132.

[50] WU Q, YAN X X, XIAO K, et al. Optimization of membrane unit location in a full-scale membrane bioreactor using computational fluid dynamics[J]. Bioresource Technology, 2018, 249: 402-409.

[51] 梁汀, 蒋岚岚, 张万里, 等. 中空纤维膜MBR污水处理工艺中细格栅系统设计探讨[J]. 给水排水, 2014(4):99-101.

[52] 黄刚华, 尤朝阳, 李旋, 等. 投加物质对减缓MBR膜污染的研究[J]. 水处理技术, 2013(9):40-44.

[53] ZHANG Q , SINGH S , STUCKEY D C . Fouling reduction using adsorbents/flocculants in a submerged anaerobic membrane bioreactor[J]. Bioresource Technology, 2017( 239):226-235.

[54] ZHANG Y Y, XUE J K, LIU Y, et al. The Role of Ozone Pretreatment on Optimization of Membrane Bioreactor for Treatment of Oil Sands Process-Affected Water[J]. Journal of Hazardous Materials, 2018,347:470-477.

[55] WU J, LE-CLECH P, STUETZ R M, et al. Effects of relaxation and backwashing conditions on fouling in membrane bioreactor[J]. Journal of Membrane Science, 2008, 324(1/2): 26-32.

[56] GONZLEZ E, DAZ O, VERA L, et al. Feedback control system for filtration optimisation based on a simple fouling model dynamically applied to membrane bioreactors[J]. Journal of Membrane Science, 2018, 552:243-252.

[57] KIM M J, SANKARARAO B, YOO C K. Determination of MBR fouling and chemical cleaning interval using statistical methods applied on dynamic index data[J]. Journal of Membrane Science, 2011, 375(1/2): 345-353.

[58] RUIGMEZ I, GONZLEZ E, GUERRA S, et al. Evaluation of a novel physical cleaning strategy based on HF membrane rotation during the backwashing/relaxation phases for anaerobic submerged MBR[J]. Journal of Membrane Science, 2017, 526: 181-190.

[59] CAI W W, LIU Y. Enhanced membrane biofouling potential by on-line chemical cleaning in membrane bioreactor[J]. Journal of Membrane Science, 2016, 511: 84-91.

[60] HAN X M, WANG Z W, CHEN M, et al. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances[J]. Environmental Science & Technology, 2017, 51(6): 3233-3241.

[61] MEI X J, QUEK P J, WANG Z W, et al. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor[J]. Bioresource Technology, 2017, 240: 25-32.

[62] GKOTSIS P K, MITRAKAS M M, TOLKOU A K, et al. Batch and continuous dosing of conventional and composite coagulation agents for fouling control in a pilot-scale MBR[J]. Chemical Engineering Journal, 2017, 311: 255-264.

[63] MERTENS M, BILAD M R, GEBREYOHANNES A Y, et al. Membrane development for improved performance of a magnetically induced vibration system for anaerobic sludge filtration[J]. Separation and Purification Technology, 2018, 200: 120-129.

[64] YANG Y, QIAO S, JIN R F, et al. Fouling control mechanisms in filtrating natural organic matters by electro-enhanced carbon nanotubes hollow fiber membranes[J]. Journal of Membrane Science, 2018, 553: 54-62.

[65] VILLAMIL J A, MONSALVO V M, LOPEZ J, et al. Fouling control in membrane bioreactors with sewage-sludge based adsorbents[J]. Water Research, 2016, 105: 65-75.

[66] WANG J W, WU B, LIU Y, et al. Monitoring local membrane fouling mitigation by fluidized GAC in lab-scale and pilot-scale AnFMBRs[J]. Separation and Purification Technology, 2018, 199: 331-345.

[67] GKOTSIS P K, BATSARI E L, PELEKA E N, et al. Fouling control in a lab-scale MBR system: comparison of several commercially applied coagulants[J]. Journal of Environmental Management, 2017, 203: 838-846.

[68] ZHANG Q Y, SINGH S, STUCKEY D C. Fouling reduction using adsorbents/flocculants in a submerged anaerobic membrane bioreactor[J]. Bioresource Technology, 2017, 239: 226-235.

[69] HAZRATI H, JAHANBAKHSHI N, ROSTAMIZADEH M. Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents[J]. Journal of Membrane Science, 2018, 555: 455-462.

[70] LIU Y, LIU Q, LI J X, et al. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment[J]. Bioresource Technology, 2018, 249(10): 377-385.

[71] ERGÖN-CAN T, KöSE-MUTLU B, KOYUNCU I, et al. Biofouling control based on bacterial quorum quenching with a new application: rotary microbial carrier frame[J]. Journal of Membrane Science, 2017, 525: 116-124.

[72] IORHEMEN O T, HAMZA R A, TAY J H. Membrane fouling control in membrane bioreactors (MBRs) using granular materials[J]. Bioresource Technology, 2017, 240: 9-24.

[73] XIAO Y Y, WAHEED H, XIAO K, et al. In tandem effects of activated carbon and quorum quenching on fouling control and simultaneous removal of pharmaceutical compounds in membrane bioreactors[J]. Chemical Engineering Journal, 2018, 341: 610-617.

[74] TANG J L, WANG X C, HU Y S, et al. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: microbial communities and membrane fouling behaviour[J]. Bioresource Technology, 2017, 236: 164-173.

[75] SUN L, TIAN Y, ZHANG J, et al. A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: performance and mechanism[J]. Chemical Engineering Journal, 2018, 344: 246-253.

[76] SUN L, TIAN Y, ZHANG J, et al. Wastewater treatment and membrane fouling with algal-activated sludge culture in a novel membrane bioreactor: influence of inoculation ratios[J]. Chemical Engineering Journal, 2018, 343: 455-459.

[77] SUN L, TIAN Y, ZHANG J, et al. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: performance and microbial community analysis[J]. Bioresource Technology, 2018, 251: 311-319.

RESEARCH PROGRESS ON CHARACTERIZATION AND CONTROL OF FOULING IN MEMBRANE BIOREACTORS

GAO Fang1,2,3*, MA Lin2, HUO Tao4, LIU Yang2, LI Yu-ping3, XING Lin-lin2, SHI Yan-wei1

(1. Beijing Enterprises Water Group (China) Investment Limited, Beijing 100102,China; 2. Beijing BHZQ Environmental Engineering Technology Co., Ltd, Beijing 100176, China; 3. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; 4. Beijing Daxing District Water Authority, Beijing 102600, China)

Abstract: Membrane bioreactors (MBRs) have been concerned by the people because of the advantages in industrial wastewater treatment. However, the complex membrane fouling by diverse foulants, and high energy consumption operation were main obstacles for the wide application of MBRs. Therefore, from the perspective of membrane fouling mechanisms and control, this study addressed the recent and current development achievements about the factors of the membrane fouling and fouling behaviors. On the basis of fouling mechanisms, the fouling controlling approaches were discussed, and the studies of controlling strategies by modify activated sludge were also reviewed.

Keywords: membrane reactors; membrane fouling; fouling control; characteristics of activated sludge

DOI:10.13205/j.hjgc.202003012

收稿日期:2018-12-12

基金项目:北京市朝阳区博士后科研资助项目。