BP人工神经网络在环境空气SO_2质量浓度预测中的应用
doi: 10.13205/j.hjgc.201406028
-
摘要: 根据西安市雁塔区小寨环境空气监测点2011年7月31日起400 d的SO224小时平均浓度监测数据时间序列建立BP人工神经网络(ANN)预测模型,并用接下来100 d的数据对模型的仿真性能进行检验,从而验证了BP人工神经网络模型预测环境空气SO224小时平均浓度的可行性与准确度。经反复调试,最终选用2-3-1的网络结构并以trainbr作为训练算法,经34次迭代网络收敛,耗时7 s,预测结果相对于实际监测数据的平均绝对百分比误差为0.082,模型显示出良好的预测性能。预测结果表明,结构设定合理、训练算法选用适宜的BP人工神经网络模型能较好地反映SO2浓度的动态变化规律,具有可行性。
点击查看大图
计量
- 文章访问数: 80
- HTML全文浏览量: 1
- PDF下载量: 195
- 被引次数: 0