基于多模态支持向量回归的PM_(2.5)浓度预测
doi: 10.13205/j.hjgc.201901024
-
摘要: 为更好地掌握日均PM_(2.5)浓度的变化规律,提出了一种基于多模态支持向量回归(MSVR)的混合预测模型。利用集成经验模态分解将日均PM_(2.5)数据分解成不同频段的分量序列,以降低数据的非平稳性。然后根据每组分量自身特点构建不同的支持向量回归(SVR)模型,并通过相关分析确定各分量输入变量。最后,将各分量预测值进行叠加得到最终预测结果。以浙江省玉环市的PM_(2.5)浓度进行验证。结果表明:与单一SVR模型相比,MSVR模型具有更好的预测效果,精度评价指标MAE、MAPE和RMSE分别下降了26.98%、23.04%、34.08%,这为大气污染预控提供了有效的技术支持。
点击查看大图
计量
- 文章访问数: 128
- HTML全文浏览量: 14
- PDF下载量: 16
- 被引次数: 0