-
摘要: 采用磷酸镁水泥(MPC)和普通硅酸盐水泥(OPC)对垃圾焚烧飞灰进行固化/稳定化处理,通过无侧限抗压强度试验、渗透试验和浸出试验分别研究了MPC和OPC对垃圾焚烧飞灰固化体力学和浸出特性的影响规律,并通过压汞试验和形态提取试验分析了相应的微观机理。试验结果表明:随着MPC和OPC添加量的增加,飞灰固化体的强度增加,渗透系数和重金属(Pb、Cd)浸出浓度降低,但相同添加量的OPC固化体的强度、渗透系数及重金属(Pb、Cd)浸出浓度均大于MPC固化体;压汞试验结果表明:在相同添加量条件下,OPC固化体的孔隙体积大于MPC固化体,且OPC和MPC分别通过减少孔径>1μm和>0. 1μm孔隙的体积来影响固化体的强度和渗透特性;形态提取试验结果表明:OPC和MPC均可促使Pb、Cd从活性态(弱酸提取态)向较稳定态(可还原态、残渣态)转化,但MPC固化体中残渣态的Pb、Cd含量较高。MPC固化体在力学特性、重金属浸出行为及微观结构均优于OPC固化体,OPC和MPC对Pb、Cd固稳机制的差异是MPC固稳效果优于OPC的根本原因。
-
[1] Zhou X, Zhou M, Wu X, et al. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag[J]. Chemosphere,2017,182:76-84. [2] Yan D H,Peng Z,Yu L F,et al. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash[J]. Waste Management,2018,76:106-116. [3] Wan S,Zhou X,Zhou M,et al. Hydration characteristics and modeling of ternary system of municipal solid wastes incineration fly ash-blast furnace slag-cement[J]. Construction and Building Materials,2018,180:154-166. [4] 张亭亭,李江山,王平.磷酸镁水泥固化铅污染土的应力-应变特性研究[J].岩土力学,2016,37(增刊1):215-224. [5] 张亭亭,李江山,王平.磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J].岩土力学,2016,37(增刊2):279-286. [6] 蒋建国,赵振振,王军.焚烧飞灰水泥固化技术研究[J].环境科学学报,2006,26(2):230-235. [7] Xue Q,Li J S. Compound stabilization/solidification of MSWI fly ash with trimercapto-s-triazine and cement[J]. Water Science&Technology,2012,66(3):689-694. [8] 李江山,薛强,胡竹云.垃圾焚烧飞灰水泥固化体强度稳定性研究[J].岩土力学,2013,34(3):751-756. [9] Cho J H,Eom Y,Lee T G. Stabilization/solidification of mercurycontaminated waste ash using calcium sodium phosphate(CNP)and magnesium potassium phosphate(MKP)processes[J].Journal of Hazardous Materials,2014,278:474-482. [10] Zhang Z,Guo G L,Teng Y G,et al. Screening and assessment of solidification/stabilization amendments suitable for soils of leadacid battery contaminated site[J]. Journal of Hazardous Materials,2015,88:140-146. [11] Du Y J,Wei M L,Krishna R. New phosphate-based binder for stabilization of soils contaminated with heavy metals:leaching,strength and microstructure characterization[J]. Journal of Environmental Management,2014,146:179-188. [12] Prica M,Dalmacija B,Dalmacija M,et al. Changes in metal availability during sediment oxidation and the correlation with the immobilization potential[J]. Ecotoxicology and Environmental Safety,2010,73(6):1370-1377. [13] Office of Solid Waste and Emergency Response, U. S.Environmental Protection Agency. Test methods for evaluation of solid wastes,physical chemical methods:Toxicity characteristic Leaching procedure(method 1311)[R]. Washington D C:U. S.EPA,1992. [14] 环境保护部.危险废弃物鉴别标准浸出毒性鉴别:GB/T5085. 3—2007[S].北京:中国环境科学出版社,2007. [15] 住房和城乡建设部.土工试验方法标准:GB/T 50123—1999[S].北京:中国建筑工业出版社,1999. [16] American Society for Test and Materials. ASTM D5084—03:Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permameter[S].Philadelphia:ASTM Publisher,2003. [17] Zhang T T,Xue Q,Li J S,et al. Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium-contaminated soil stabilized by ferrous sulfate[J]. Environmental Progress&Sustainable Energy. [18] Wastewater Technology Centre. Proposed Evaluation Protocol for Cement-Based Solidified Wastes[R]. Canada:Environment Canada,1991. [19] Horpibulsuk S,Rachan R,Raksachon Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations,2009,49(1):85-98. [20] Li J S,Xue Q,Wang P. Comparison of solidification/stabilization of lead contaminated soil between magnesia-phosphate cement and ordinary portland cement under the same dosage[J]. Environmental Progress&Sustainable Energy,2016,35(1):88-94. [21] 杜延军,蒋宁俊,王乐.水泥固化锌污染高岭土强度及微观特性研究[J].岩土工程学报,2012,34(11):2114-2120. [22] 魏明俐,杜延军,张帆.水泥固化/稳定锌污染土的强度和变形特性试验研究[J].岩土力学,2011,32(增刊2):306-312. [23] 查甫生,刘晶晶,许龙,等.水泥固化重金属污染土干湿循环特性试验研究[J].岩土工程学报,2013,35(7):1246-1252. [24] Basta N T,Mc Gowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smeltercontaminated soil[J]. Environmental Pollution,2004,127(1):73-82. [25] Wang A J,Zhang J,Li J M,et al. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics[J]. Materials Science and Engineering:C,2013,33(5):2508-2512. [26] Saxena S,Dsouza S F. Heavy metal pollution abatement using rock phosphate mineral[J]. Environment International,2006,32(2):199-202. [27] Raicevic S,Kaludjerovic T,Zouboulis A I. In situ stabilization of toxic metals in polluted soils using phosphates:theoretical prediction and experimental verification[J]. Journal of Hazardous Materials,2005,117(1):41-53.
点击查看大图
计量
- 文章访问数: 60
- HTML全文浏览量: 11
- PDF下载量: 0
- 被引次数: 0