中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垃圾焚烧飞灰固化体的力学和浸出特性分析

贺瑶瑶 陈金洪

贺瑶瑶, 陈金洪. 垃圾焚烧飞灰固化体的力学和浸出特性分析[J]. 环境工程, 2019, 37(9): 154-158. doi: 10.13205/j.hjgc.201909028
引用本文: 贺瑶瑶, 陈金洪. 垃圾焚烧飞灰固化体的力学和浸出特性分析[J]. 环境工程, 2019, 37(9): 154-158. doi: 10.13205/j.hjgc.201909028

垃圾焚烧飞灰固化体的力学和浸出特性分析

doi: 10.13205/j.hjgc.201909028
基金项目: 

湖北省自然科学基金项目(2017CFA072)

详细信息
    作者简介:

    贺瑶瑶,女,博士,工程师,主要从事环境岩土工程方面的研究工作。261384199@qq.com

  • 中图分类号: X705

  • 摘要: 采用磷酸镁水泥(MPC)和普通硅酸盐水泥(OPC)对垃圾焚烧飞灰进行固化/稳定化处理,通过无侧限抗压强度试验、渗透试验和浸出试验分别研究了MPC和OPC对垃圾焚烧飞灰固化体力学和浸出特性的影响规律,并通过压汞试验和形态提取试验分析了相应的微观机理。试验结果表明:随着MPC和OPC添加量的增加,飞灰固化体的强度增加,渗透系数和重金属(Pb、Cd)浸出浓度降低,但相同添加量的OPC固化体的强度、渗透系数及重金属(Pb、Cd)浸出浓度均大于MPC固化体;压汞试验结果表明:在相同添加量条件下,OPC固化体的孔隙体积大于MPC固化体,且OPC和MPC分别通过减少孔径>1μm和>0. 1μm孔隙的体积来影响固化体的强度和渗透特性;形态提取试验结果表明:OPC和MPC均可促使Pb、Cd从活性态(弱酸提取态)向较稳定态(可还原态、残渣态)转化,但MPC固化体中残渣态的Pb、Cd含量较高。MPC固化体在力学特性、重金属浸出行为及微观结构均优于OPC固化体,OPC和MPC对Pb、Cd固稳机制的差异是MPC固稳效果优于OPC的根本原因。
  • [1] Zhou X, Zhou M, Wu X, et al. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag[J]. Chemosphere,2017,182:76-84.
    [2] Yan D H,Peng Z,Yu L F,et al. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash[J]. Waste Management,2018,76:106-116.
    [3] Wan S,Zhou X,Zhou M,et al. Hydration characteristics and modeling of ternary system of municipal solid wastes incineration fly ash-blast furnace slag-cement[J]. Construction and Building Materials,2018,180:154-166.
    [4] 张亭亭,李江山,王平.磷酸镁水泥固化铅污染土的应力-应变特性研究[J].岩土力学,2016,37(增刊1):215-224.
    [5] 张亭亭,李江山,王平.磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J].岩土力学,2016,37(增刊2):279-286.
    [6] 蒋建国,赵振振,王军.焚烧飞灰水泥固化技术研究[J].环境科学学报,2006,26(2):230-235.
    [7] Xue Q,Li J S. Compound stabilization/solidification of MSWI fly ash with trimercapto-s-triazine and cement[J]. Water Science&Technology,2012,66(3):689-694.
    [8] 李江山,薛强,胡竹云.垃圾焚烧飞灰水泥固化体强度稳定性研究[J].岩土力学,2013,34(3):751-756.
    [9] Cho J H,Eom Y,Lee T G. Stabilization/solidification of mercurycontaminated waste ash using calcium sodium phosphate(CNP)and magnesium potassium phosphate(MKP)processes[J].Journal of Hazardous Materials,2014,278:474-482.
    [10] Zhang Z,Guo G L,Teng Y G,et al. Screening and assessment of solidification/stabilization amendments suitable for soils of leadacid battery contaminated site[J]. Journal of Hazardous Materials,2015,88:140-146.
    [11] Du Y J,Wei M L,Krishna R. New phosphate-based binder for stabilization of soils contaminated with heavy metals:leaching,strength and microstructure characterization[J]. Journal of Environmental Management,2014,146:179-188.
    [12] Prica M,Dalmacija B,Dalmacija M,et al. Changes in metal availability during sediment oxidation and the correlation with the immobilization potential[J]. Ecotoxicology and Environmental Safety,2010,73(6):1370-1377.
    [13] Office of Solid Waste and Emergency Response, U. S.Environmental Protection Agency. Test methods for evaluation of solid wastes,physical chemical methods:Toxicity characteristic Leaching procedure(method 1311)[R]. Washington D C:U. S.EPA,1992.
    [14] 环境保护部.危险废弃物鉴别标准浸出毒性鉴别:GB/T5085. 3—2007[S].北京:中国环境科学出版社,2007.
    [15] 住房和城乡建设部.土工试验方法标准:GB/T 50123—1999[S].北京:中国建筑工业出版社,1999.
    [16] American Society for Test and Materials. ASTM D5084—03:Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permameter[S].Philadelphia:ASTM Publisher,2003.
    [17] Zhang T T,Xue Q,Li J S,et al. Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium-contaminated soil stabilized by ferrous sulfate[J]. Environmental Progress&Sustainable Energy.
    [18] Wastewater Technology Centre. Proposed Evaluation Protocol for Cement-Based Solidified Wastes[R]. Canada:Environment Canada,1991.
    [19] Horpibulsuk S,Rachan R,Raksachon Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations,2009,49(1):85-98.
    [20] Li J S,Xue Q,Wang P. Comparison of solidification/stabilization of lead contaminated soil between magnesia-phosphate cement and ordinary portland cement under the same dosage[J]. Environmental Progress&Sustainable Energy,2016,35(1):88-94.
    [21] 杜延军,蒋宁俊,王乐.水泥固化锌污染高岭土强度及微观特性研究[J].岩土工程学报,2012,34(11):2114-2120.
    [22] 魏明俐,杜延军,张帆.水泥固化/稳定锌污染土的强度和变形特性试验研究[J].岩土力学,2011,32(增刊2):306-312.
    [23] 查甫生,刘晶晶,许龙,等.水泥固化重金属污染土干湿循环特性试验研究[J].岩土工程学报,2013,35(7):1246-1252.
    [24] Basta N T,Mc Gowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smeltercontaminated soil[J]. Environmental Pollution,2004,127(1):73-82.
    [25] Wang A J,Zhang J,Li J M,et al. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics[J]. Materials Science and Engineering:C,2013,33(5):2508-2512.
    [26] Saxena S,Dsouza S F. Heavy metal pollution abatement using rock phosphate mineral[J]. Environment International,2006,32(2):199-202.
    [27] Raicevic S,Kaludjerovic T,Zouboulis A I. In situ stabilization of toxic metals in polluted soils using phosphates:theoretical prediction and experimental verification[J]. Journal of Hazardous Materials,2005,117(1):41-53.
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 网络出版日期:  2023-11-24
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回