-
摘要: 生物炭作为一种新型的吸附材料,具有比表面积大、官能团丰富、稳定性高等特点,施入土壤后可影响重金属在土壤中的迁移性和生物有效性。从生物炭对重金属的吸附机制、生物炭还田应用效果进行了概述,在此基础上分析了生物炭推广应用的限制因素,并从生物炭与土壤的相互作用、生物炭的制备工艺完善等方面进行了展望。生物炭施入土壤后可通过阳离子-π作用、离子交换、络合、共沉淀、氧化还原和静电吸附作用降低重金属有效态含量,减少作物对重金属的累积。但生物炭在实际应用中仍存在作用效果不稳定、价格高昂难以大面积推广应用等问题,未来有必要进一步探明生物炭与土壤互作关系、完善生物炭制备工艺,为生物炭的广泛高效利用提供支撑。
-
[1] 环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014. [2] Bolan N,Kunhikrishnan A,Thangarajan R,et al. Remediation of heavy metals(loid)contaminated soils to mobilize or to immobilize?[J]. Journal of Hazardous Materials,2014,266:141-166. [3] Magdalena S,Daniel C W T,Yong S O,et al. A field study of bioavailable polycyclic aromatic hydrocarbons(PAHs)in sewage sludge and biochar amended soils[J]. Journal of Hazardous Materials,2018,349:27-34. [4] Maria I S G,Cheryl M,Ander Q A,et al. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,2018,201:278-285. [5] 肖然.生物炭的制备及其对养分保留和重金属钝化的潜力研究[D].咸阳:西北农林科技大学,2017. [6] 刘国成.生物炭对水体和土壤环境中重金属铅的固持[D].青岛:中国海洋大学,2014. [7] Harvery O R,Herbert B E,Rhue R D,et al. Metal interactions at the biochar-water interface:energetics and structure-sorption relationships elucidated by flow adsorption microcalorimety[J].Environmental Science&Technology,2011,45(13):5550-5556. [8] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,31(11):2277-2283. [9] 王棋,王斌伟,谈广才,等.生物炭对Cu(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)和Cd(Ⅱ)的单一及竞争吸附研究[J].北京大学学报(自然科学版),2017,53(6):1122-1132. [10] Lu H L,Zhang W H,Yang Y X,et al. Relative distribution of Pb2+sorption mechanisms by sludge-derived biochar[J]. Water Research,2012,46(3):854-862. [11] 韩鲁佳,李彦霏,刘贤,等.生物炭吸附水体中重金属机理与工艺研究进展[J].农业机械学报,2017,48(11):1-11. [12] Zhang W H,Zheng J,Zheng P P,et al. Sludge-derived biochar for arsenic(Ⅲ)immobilization:effects of solution chemistry on sorption behavior[J]. Journal of Environmental Quality,2015,44(4):1119. [13] Yin D X,Wang X,Chen C,et al. Varying effect of biochar on Cd,Pb and As mobility in a multi-metal contaminated paddy soil[J]. Chemosphere,2016,152:196-206. [14] Trakal L,Veselska V,Safarik I,et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology,2016,203:318-324. [15] Wanger A,Kaupenjohann M,Hu Y,et al. Biochar-induced formation of Zn-P phases in former sewage field soils studied by PK-edge XANES spectroscopy[J]. Journal of Plant Nutrition and Soil Science,2015,178(4):582-585. [16] Cao X D,Ma L N,Gao B,et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science&Technology,2009,43(9):3285-3291. [17] Xu X Y,Zhao Y H,Sima J K,et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications:a review[J]. Bioresource Technology,2017,241:887-899. [18] Dong X L,Ma L Q,Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190:909-915. [19] Zhang W H,Mao S Y,Chen H,et al. Pb(Ⅱ)and Cr(Ⅵ)sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technology,2013,147:545-552. [20] Zhou L,Liu Y G,Liu S B,et al. Investigation of the adsorptionreduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology,2016,218:351-359. [21] Pan J,Jiang J,Xu R. Adsorption of Cr(Ⅲ)from acidic solutions by crop straw derived biochars[J]. Journal of Environmental Sciences,2013,25(10):1957-1965. [22] Tang J,Zhu W,Kookana R,et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering,2013,116(6):653-659. [23] 尚美荣.氧化石墨烯修饰生物炭的制备及对Cr6+的吸附机理研究[D].长沙:湖南大学,2017. [24] Wang M C,Sheng G D,Qiu Y P. A novel manganese-oxide/biochar composite for efficient removal of lead(Ⅱ)from aqueous solutions[J]. International Journal of Environmental Science and Technology,2015,12:1719-1726. [25] Wang H Y,Gao B,Wang S S,et al. Removal of Pb(Ⅱ),Cu(Ⅱ)and Cd(Ⅱ)from aqueous solutions by biochar derived from KMnO4treated hickory wood[J]. Bioresource Technology,2015,197:356-362. [26] 佟雪娇.生物质炭对水体/红壤中Cu(Ⅱ)的去除和固定作用[D].南京:南京农业大学,2011. [27] Bian R J,Joseph S,Cui L Q,et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials,2014,272:121-128. [28] Wu P,Cui P X, Fang G D, et al. Biochar decreased the bioavailability of Zn to rice and wheat grains:insights from microscopic to macroscopic scales[J]. Science of the Total Environment,2018,621:160-167. [29] Egene C E,Pouche R V,Ok Y S,et al. Impact of organic amendments(biochar,compost and peat)on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years[J]. Science of the Total Environment,2018,626:195-202. [30] Nie C R,Yang X,Niazi N K,et al. Impact of sugarcane bagassederived biochar on heavy metal availability and microbial activity:a field study[J]. Chemosphere,2018,200:274-282. [31] Shen Z G,Soma. M,Wang F,et al. Long-term impact of biochar on the immobilisation of nickel(Ⅱ)and zinc(Ⅱ)and the revegetation of a contaminated site[J]. Science of the Total Environment,2016,542:771-776. [32] Chen D,Guo H,Li R Y,et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice:a field study over four rice seasons in Hunan,China[J]. Science of the Total Environment,2016,541:1489-1498. [33] Bian R J,Chen D,Liu L Q,et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China:results from a cross-site field experiment[J]. Ecological Engineering,2013,58:378-383. [34] Bian R J, Li L Q,Bao D D, et al. Cd immobilization in acontaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar[J].Environmental Science and Pollution Research,2016,23:10028-10036. [35] Cui L Q,Pan G X,Li L Q,et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil:a five-year field experiment[J]. Ecological Engineering,2016,93:1-8. [36] 罗惠莉,王宇霖,周思,等.生物炭基调理剂对水稻镉吸收的影响[J].环境工程学报,2018,12(4):1190-1197. [37] 罗惠莉,周思,周静如,等.生物炭基调理剂对土壤镉生物有效性的影响[J].湖南农业科学,2018(10):48-51,55. [38] 胡雪芳,田志清,梁亮,等.不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析[J].环境科学,2018,39(7):3409-3417. [39] 李衍亮,黄玉芬,魏岚,等.施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J].农业环境科学学报,2017,36(11):2233-2239. [40] 刘旭东,张润花,李志国,等.生物炭对设施栽培土壤重金属Cd形态变化的影响[J].中国农学通报,2016,32(15):125-129. [41] 谢亚萍,张琳琳,郅惠博,等.稻壳生物炭与肥料配施对稻田镉铅铬砷的钝化与肥效的影响[J].复旦学报(自然科学版),2017,56(2):228-232. [42] 王期凯,郭文娟,孙国红,等.生物炭与肥料复配对土壤重金属镉污染钝化修复效应[J].农业资源与环境学报,2015,32(6):583-589. [43] 周金波,汪峰,金树权,等.不同材料生物炭对镉污染土壤修复和青菜镉吸收的影响[J].浙江农业科学,2017,58(9):1559-1560. [44] Tahir A,Munammad R,Shafaqat A,et al. Effect of biochar on cadmium bioavailability and uptake in wheat(Triticum aestivum L.)grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety,2017,140:37-47. [45] Wu P,Cui P X,Fang G D, et al. Biochar decreased the bioavailability of Zn to rice and wheat grains:insights from microscopic to macroscopic scales[J]. Science of the Total Environment,2018,621:160-167. [46] Oan J M. Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs[J]. Environmental Science&Technology,2012,46:7939-7954. [47] Jensen P A,Frandsen F J,Dam-johansen K,et al. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels,2002,14(6):1280-1285. [48] Bridgwater A V,Toft A J,Brammer J G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion[J]. Renewable and Sustainable Energy Reviews,2002,6(3):181-248. [49] Sebastian M, Bruno G, Peter Q. Technical, economical and climate-related aspects of biochar production technologies:a literature review[J]. Environmental Science&Technology,2011,45(22):9473-9483. [50] 姜志翔.生物炭技术缓解温室气体排放的潜力评估[D].青岛:中国海洋大学,2013.
点击查看大图
计量
- 文章访问数: 187
- HTML全文浏览量: 17
- PDF下载量: 1
- 被引次数: 0