中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭去除土壤重金属的研究进展

熊静 王蓓丽 刘渊文 郭丽莉 李书鹏 林启美 陈有鑑

熊静, 王蓓丽, 刘渊文, 郭丽莉, 李书鹏, 林启美, 陈有鑑. 生物炭去除土壤重金属的研究进展[J]. 环境工程, 2019, 37(9): 182-187. doi: 10.13205/j.hjgc.201909033
引用本文: 熊静, 王蓓丽, 刘渊文, 郭丽莉, 李书鹏, 林启美, 陈有鑑. 生物炭去除土壤重金属的研究进展[J]. 环境工程, 2019, 37(9): 182-187. doi: 10.13205/j.hjgc.201909033

生物炭去除土壤重金属的研究进展

doi: 10.13205/j.hjgc.201909033
基金项目: 

国家重点研发计划(2017YFD0800900)

详细信息
    作者简介:

    熊静(1987-),女,博士,主要研究方向为修复材料研制及应用研究。xiongjing@bceer.com

    通讯作者:

    陈有鑑(1969-),男,博士,教授级高工,主要研究方向为污染场地土壤与地下水环境修复。chenyoujian@bceer.com

  • 中图分类号: TQ127.11;X53

  • 摘要: 生物炭作为一种新型的吸附材料,具有比表面积大、官能团丰富、稳定性高等特点,施入土壤后可影响重金属在土壤中的迁移性和生物有效性。从生物炭对重金属的吸附机制、生物炭还田应用效果进行了概述,在此基础上分析了生物炭推广应用的限制因素,并从生物炭与土壤的相互作用、生物炭的制备工艺完善等方面进行了展望。生物炭施入土壤后可通过阳离子-π作用、离子交换、络合、共沉淀、氧化还原和静电吸附作用降低重金属有效态含量,减少作物对重金属的累积。但生物炭在实际应用中仍存在作用效果不稳定、价格高昂难以大面积推广应用等问题,未来有必要进一步探明生物炭与土壤互作关系、完善生物炭制备工艺,为生物炭的广泛高效利用提供支撑。
  • [1] 环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014.
    [2] Bolan N,Kunhikrishnan A,Thangarajan R,et al. Remediation of heavy metals(loid)contaminated soils to mobilize or to immobilize?[J]. Journal of Hazardous Materials,2014,266:141-166.
    [3] Magdalena S,Daniel C W T,Yong S O,et al. A field study of bioavailable polycyclic aromatic hydrocarbons(PAHs)in sewage sludge and biochar amended soils[J]. Journal of Hazardous Materials,2018,349:27-34.
    [4] Maria I S G,Cheryl M,Ander Q A,et al. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,2018,201:278-285.
    [5] 肖然.生物炭的制备及其对养分保留和重金属钝化的潜力研究[D].咸阳:西北农林科技大学,2017.
    [6] 刘国成.生物炭对水体和土壤环境中重金属铅的固持[D].青岛:中国海洋大学,2014.
    [7] Harvery O R,Herbert B E,Rhue R D,et al. Metal interactions at the biochar-water interface:energetics and structure-sorption relationships elucidated by flow adsorption microcalorimety[J].Environmental Science&Technology,2011,45(13):5550-5556.
    [8] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,31(11):2277-2283.
    [9] 王棋,王斌伟,谈广才,等.生物炭对Cu(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)和Cd(Ⅱ)的单一及竞争吸附研究[J].北京大学学报(自然科学版),2017,53(6):1122-1132.
    [10] Lu H L,Zhang W H,Yang Y X,et al. Relative distribution of Pb2+sorption mechanisms by sludge-derived biochar[J]. Water Research,2012,46(3):854-862.
    [11] 韩鲁佳,李彦霏,刘贤,等.生物炭吸附水体中重金属机理与工艺研究进展[J].农业机械学报,2017,48(11):1-11.
    [12] Zhang W H,Zheng J,Zheng P P,et al. Sludge-derived biochar for arsenic(Ⅲ)immobilization:effects of solution chemistry on sorption behavior[J]. Journal of Environmental Quality,2015,44(4):1119.
    [13] Yin D X,Wang X,Chen C,et al. Varying effect of biochar on Cd,Pb and As mobility in a multi-metal contaminated paddy soil[J]. Chemosphere,2016,152:196-206.
    [14] Trakal L,Veselska V,Safarik I,et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology,2016,203:318-324.
    [15] Wanger A,Kaupenjohann M,Hu Y,et al. Biochar-induced formation of Zn-P phases in former sewage field soils studied by PK-edge XANES spectroscopy[J]. Journal of Plant Nutrition and Soil Science,2015,178(4):582-585.
    [16] Cao X D,Ma L N,Gao B,et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science&Technology,2009,43(9):3285-3291.
    [17] Xu X Y,Zhao Y H,Sima J K,et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications:a review[J]. Bioresource Technology,2017,241:887-899.
    [18] Dong X L,Ma L Q,Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190:909-915.
    [19] Zhang W H,Mao S Y,Chen H,et al. Pb(Ⅱ)and Cr(Ⅵ)sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technology,2013,147:545-552.
    [20] Zhou L,Liu Y G,Liu S B,et al. Investigation of the adsorptionreduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology,2016,218:351-359.
    [21] Pan J,Jiang J,Xu R. Adsorption of Cr(Ⅲ)from acidic solutions by crop straw derived biochars[J]. Journal of Environmental Sciences,2013,25(10):1957-1965.
    [22] Tang J,Zhu W,Kookana R,et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering,2013,116(6):653-659.
    [23] 尚美荣.氧化石墨烯修饰生物炭的制备及对Cr6+的吸附机理研究[D].长沙:湖南大学,2017.
    [24] Wang M C,Sheng G D,Qiu Y P. A novel manganese-oxide/biochar composite for efficient removal of lead(Ⅱ)from aqueous solutions[J]. International Journal of Environmental Science and Technology,2015,12:1719-1726.
    [25] Wang H Y,Gao B,Wang S S,et al. Removal of Pb(Ⅱ),Cu(Ⅱ)and Cd(Ⅱ)from aqueous solutions by biochar derived from KMnO4treated hickory wood[J]. Bioresource Technology,2015,197:356-362.
    [26] 佟雪娇.生物质炭对水体/红壤中Cu(Ⅱ)的去除和固定作用[D].南京:南京农业大学,2011.
    [27] Bian R J,Joseph S,Cui L Q,et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials,2014,272:121-128.
    [28] Wu P,Cui P X, Fang G D, et al. Biochar decreased the bioavailability of Zn to rice and wheat grains:insights from microscopic to macroscopic scales[J]. Science of the Total Environment,2018,621:160-167.
    [29] Egene C E,Pouche R V,Ok Y S,et al. Impact of organic amendments(biochar,compost and peat)on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years[J]. Science of the Total Environment,2018,626:195-202.
    [30] Nie C R,Yang X,Niazi N K,et al. Impact of sugarcane bagassederived biochar on heavy metal availability and microbial activity:a field study[J]. Chemosphere,2018,200:274-282.
    [31] Shen Z G,Soma. M,Wang F,et al. Long-term impact of biochar on the immobilisation of nickel(Ⅱ)and zinc(Ⅱ)and the revegetation of a contaminated site[J]. Science of the Total Environment,2016,542:771-776.
    [32] Chen D,Guo H,Li R Y,et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice:a field study over four rice seasons in Hunan,China[J]. Science of the Total Environment,2016,541:1489-1498.
    [33] Bian R J,Chen D,Liu L Q,et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China:results from a cross-site field experiment[J]. Ecological Engineering,2013,58:378-383.
    [34] Bian R J, Li L Q,Bao D D, et al. Cd immobilization in acontaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar[J].Environmental Science and Pollution Research,2016,23:10028-10036.
    [35] Cui L Q,Pan G X,Li L Q,et al. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil:a five-year field experiment[J]. Ecological Engineering,2016,93:1-8.
    [36] 罗惠莉,王宇霖,周思,等.生物炭基调理剂对水稻镉吸收的影响[J].环境工程学报,2018,12(4):1190-1197.
    [37] 罗惠莉,周思,周静如,等.生物炭基调理剂对土壤镉生物有效性的影响[J].湖南农业科学,2018(10):48-51,55.
    [38] 胡雪芳,田志清,梁亮,等.不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析[J].环境科学,2018,39(7):3409-3417.
    [39] 李衍亮,黄玉芬,魏岚,等.施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J].农业环境科学学报,2017,36(11):2233-2239.
    [40] 刘旭东,张润花,李志国,等.生物炭对设施栽培土壤重金属Cd形态变化的影响[J].中国农学通报,2016,32(15):125-129.
    [41] 谢亚萍,张琳琳,郅惠博,等.稻壳生物炭与肥料配施对稻田镉铅铬砷的钝化与肥效的影响[J].复旦学报(自然科学版),2017,56(2):228-232.
    [42] 王期凯,郭文娟,孙国红,等.生物炭与肥料复配对土壤重金属镉污染钝化修复效应[J].农业资源与环境学报,2015,32(6):583-589.
    [43] 周金波,汪峰,金树权,等.不同材料生物炭对镉污染土壤修复和青菜镉吸收的影响[J].浙江农业科学,2017,58(9):1559-1560.
    [44] Tahir A,Munammad R,Shafaqat A,et al. Effect of biochar on cadmium bioavailability and uptake in wheat(Triticum aestivum L.)grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety,2017,140:37-47.
    [45] Wu P,Cui P X,Fang G D, et al. Biochar decreased the bioavailability of Zn to rice and wheat grains:insights from microscopic to macroscopic scales[J]. Science of the Total Environment,2018,621:160-167.
    [46] Oan J M. Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs[J]. Environmental Science&Technology,2012,46:7939-7954.
    [47] Jensen P A,Frandsen F J,Dam-johansen K,et al. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels,2002,14(6):1280-1285.
    [48] Bridgwater A V,Toft A J,Brammer J G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion[J]. Renewable and Sustainable Energy Reviews,2002,6(3):181-248.
    [49] Sebastian M, Bruno G, Peter Q. Technical, economical and climate-related aspects of biochar production technologies:a literature review[J]. Environmental Science&Technology,2011,45(22):9473-9483.
    [50] 姜志翔.生物炭技术缓解温室气体排放的潜力评估[D].青岛:中国海洋大学,2013.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 网络出版日期:  2023-11-24
  • 刊出日期:  2019-09-30

目录

    /

    返回文章
    返回