RESEARCH PROGRESS OF ORGANIC-INORGANIC PHOTOCATALYSTS FOR DEGRADING VOCs
-
摘要: 挥发性有机物(VOCs)带来了诸多危害,VOCs治理已成研究热点。光催化降解VOCs因其低成本、无二次污染、节能、高矿化率等优点被广泛研究。TiO2、Bi2WO6、MOF和量子点等光催化剂已应用于VOCs的降解,并在此基础上构建一种新型有机-无机复合光催化剂。在构建有机-无机复合光催化剂的过程中,从复合催化剂的有机及无机组分、催化剂结构、光生电子调控等方面研究,以期为制备降解VOCs的新型有机-无机复合光催化剂提供新的研究思路。Abstract: Volatile organic compounds (VOCs) have brought obvious harms. VOCs treatment has become a hot research issue. Photocatalytic degradation of VOCs had been widely studied due to its advantages such as low cost, no secondary pollution, energy saving, and high mineralization rate. Studies on photocatalysts such as TiO2, Bi2WO6, MOF and quantum dots had been applied to the degradation of VOCs. Based on this, a new type of organic-inorganic composite photocatalyst was constructed. In the process of constructing the organic-inorganic composite photocatalyst, organic and inorganic components of the composite catalyst, structure of the catalyst, and control of photo-generated electrons were reviewed to improve the photocatalytic activity of the catalyst, and to prepare an innovation path for organic-inorganic composite photodegradation catalyst for VOCs removal.
-
Key words:
- organic /
- inorganic /
- photocatalytic /
- VOCs /
- organic-inorganic photocatalysts
-
熊海瑶, 阮大胜. 空气中挥发性有机物的污染来源及防治措施分析[J]. 科技经济导刊, 2019, 27(25): 115. 胡涛. 我国城市空气中挥发性有机物现状及管理[J]. 环境管理, 2019. 冯丽丽, 胡晓芳. 顶空固相微萃取/气相色谱-三重四极杆串联质谱法测定地表水与饮用水中的挥发性有机物[J]. 分析测试学报, 2019, 38(11): 1294-1300. 苏庆梅, 邢伯蕾, 梁桂廷. 我国大气中挥发性有机物监测与控制现状分析[J]. 节能检测, 2019,38(8): 89-90. 古丽君. 工业源VOCs污染治理问题及对策[J]. 环境与发展, 2019, 31(7): 38-39. PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 41-78. VIZHEMEHR A K, HAGHIGHAT F. Modeling of gas-phase filter model for high-and low-challenge gas concentrations[J]. Building and Environment, 2014, 80: 192-203. 陈平, 陈俊. 挥发性有机化合物的污染控制[J]. 石油化工环境保护, 2006, 29(3): 20-23. 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. 田瑞丽. 可挥发性有机物的治理工艺分析[J]. 山西化工, 2019, 39(3): 203-204,214. TOMPKINS D T, ANDERSON M A. Evaluation of photocatalytic air cleaning capability: a literature review & engineering analysis[M]. ASHRAE, 2001, 43(14): 2229-2246. QIAN X, YUE D, TIAN Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016, 193: 16-21. 韩雅琦,雷蕾,杨晨,等.黑磷纳米片光催化甲基橙降解机理[J/OL]. 应用生态学报[2019-11-18].10.13287/j.1001-9332.2020001.035. AUGUGLIARO V, BELLARDITA M, LODDO V, et al. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 224-245. LIU X, LIU Y, LU S, et al. Performance and mechanism into TiO2/Zeolite composites for sulfadiazine adsorption and photodegradation[J]. Chemical Engineering Journal, 2018, 350: 131-147. HE W, SUN Y, JIANG G, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B: Environmental, 2018, 232: 340-347. MAMAGHANI A H, HAGHIGHAT F, LEE C S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art[J]. Applied Catalysis B: Environmental, 2017, 203: 247-269. ZHANG K, WANG J, JIANG W, et al. Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2018, 232: 175-181. KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278. HAYASHI H, LIGHTCAP I V, TSUJIMOTO M, et al. Electron transfer cascade by organic/inorganic ternary compo-sites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation[J]. Journal of the American Chemical Society, 2011,133(20): 7684-7687. YANG X, QIN J, JIANG Y, et al. Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria[J]. Applied Catalysis B: Environmental, 2015, 166: 231-240. HU Y, LI D, ZHENG Y, et al. BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 30-36. SANSOTERA M, KHEYLI S G M, BAGGIOLI A, et al. Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification[J]. Chemical Engineering Journal, 2019, 361: 885-896. ZHANG Y, TANG Z R, FU X, et al. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 445-452. 钟娜, 汤莎莎, 余岩, 等. 核壳异质结催化剂BiOCl/F-TiO2可见光催化降解4-氯酚[J]. 环境污染与防治, 2019, 41(8): 876-881. WANG L, GAO X, CHENG Y, et al. TiO2@MgAl-layered double hydroxide with enhanced photocatalytic activity towards degradation of gaseous toluene[J]. Journal of Photochemistry and Photobiology A: chemistry, 2019, 369: 44-53. RAO Z, XIE X, WANG X, et al. Defect chemistry of Er3+-doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs[J]. The Journal of Physical Chemistry C, 2019, 123(19): 12321-12334. WANG J, TANG L, ZENG G, et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight[J]. Applied Catalysis B: Environmental, 2018, 222: 115-123. LI Y, HUI B, GAO L, et al. Facile one-pot synthesis of wood based bismuth molybdate nano-eggshells with efficient visible-light photocatalytic activity[J]. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2018, 556: 284-290. HUANG H, OU H, FENG J, et al. Achieving highly promoted visible-light sensitive photocatalytic activity on BiOIO3 via facile iodine doping[J]. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2017, 518: 158-165. ZHU C, LIU Y, CAO H, et al. Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light[J]. Colloids and Surfaces A: physicochemical and Engineering Aspects, 2019, 568: 327-333. ZHANG Y C, LI Z, ZHANG L, et al. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies[J]. Applied Catalysis B: Environmental, 2018, 224: 101-108. ZHANG S, PU W, CHEN A, et al. Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light[J]. Journal of hazardous materials, 2019: 121478. SAISON T, GRAS P, CHEMIN N, et al. New insights into Bi2WO6 properties as a visible-light photocatalyst[J]. The Journal of Physical Chemistry C, 2013, 117(44): 22656-22666. CHENG G, SHAHEER AKHTAR M, YANG O, et al. Nanoprecursor-mediated synthesis of Mg2+-doped TiO2 nanoparticles and their application for dye-sensitized solar cells[J]. Journal of nanoscience and nanotechnology, 2016, 16(1): 744-752. FU S, ZHENG Y, ZHOU X, et al. Visible light promoted degradation of gaseous volatile organic compounds cat-alyzed by Au supported layered double hydroxides: influencing factors, kinetics and mechanism[J]. Journal of hazardous materials, 2019, 363: 41-54. WANG J, XU X, CAO F, et al. In situ fabrication of α-Fe2O3/CaFe2O4 pn heterojunction with enhanced VOCs photodegradation activity[J]. Advanced Powder Technology, 2019, 30(3): 590-595. 陈颖芝, 王鲁宁. 有机光催化剂的研究进展[J]. 化学工业与工程, 2015, 32(3): 30-37. ZHANG X, LI H, LV X, et al. Facile synthesis of highly efficient amorphous Mn-MIL-100 Catalysts: formation mechanism and structure changes during application in CO oxidation[J]. Chemistry-A European Journal, 2018, 24(35): 8822-8832. LIU N, HUANG W, ZHANG X, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A (Fe) for enhanced visible light-driven photodegradation of RhB[J]. Applied Catalysis B: Environmental, 2018, 221: 119-128. ZHANG X, LV X, SHI X, et al. Enhanced hydrophobic UiO-66(University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air[J]. Journal of colloid and interface science, 2019, 539: 152-160. KERSHAW S V, JING L, HUANG X, et al. Materials aspects of semiconductor nanocrystals for optoelectronic applications[J]. Materials Horizons, 2017, 4(2): 155-205. Yang Y, Que W, Zhang X, et al. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation[J]. Journal of hazardous materials, 2016, 317: 430-439. 邹明强, 杨蕊, 李锦丰, 等. 量子点的光学特征及其在生命科学中的应用[J]. 分析测试学报, 2005, 24(6): 133-137. KE J, LI X, ZHAO Q, et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance[J]. Journal of colloid and interface science, 2017, 496: 425-433. 姜星雨. 碳量子点-ZIF-67催化剂的制备及其气相甲苯吸附-降解性能研究[D]. 大连: 大连理工大学, 2018. 张治广. 卟啉/苯二甲酸类配位聚合物的制备及光催化降解气相甲苯的性能研究[D]. 大连: 大连理工大学, 2016. ZOU W, GAO B, OK Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic com-pounds (VOCs) using carbon-based nanocomposites: a critical review[J]. Chemosphere, 2019, 218: 845-859. ZHU L, MENG L, SHI J, et al. Metal-organic frameworks/carbon-based materials for environmental remediation: a state-of-the-art mini-review[J]. Journal of environmental management, 2019, 232: 964-977. MO J, ZHANG Y, XU Q, et al. Photocatalytic purification of volatile organic compounds in indoor air: a literature review[J]. Atmospheric environment, 2009, 43(14): 2229-2246. QIAN X, YUE D, TIAN Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016, 193: 16-21. LUO S, KE J, YUAN M, et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants[J]. Applied Catalysis B: Environmental, 2018, 221: 215-222. SHAO D, CHENG Y, HE J, et al. A Spatially Separated Organic-inorganic Hybrid Photoelectrochemical Cell for Unassisted Overall Water Splitting[J]. ACS Catalysis, 2017, 7(8): 5308-5315. SARKAR D, ISHCHUK S, TAFFA D H, et al. Oxygen-deficient titania with adjustable band positions and defects; molecular layer deposition of hybrid organic-inorganic thin films as precursors for enhanced photocatalysis[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3853-3862. CHENG H, TING C, YUE Z, et al. Photocatalytic activity and optoelectronic property of porphyrin tin-sensitized TiO2 nanotubes[J]. Chinese Journal Of Inorganic Chemstry, 2014, 30(2): 331-336. TRUC N T T, PHAM T D, VAN THUAN D, et al. Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photo-catalytic decomposition of VOCs in aerosol under visible light[J]. Journal of Alloys and Compounds, 2019, 798: 12-18. LI X, LV X, ZHANG Q, et al. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production[J]. Journal of colloid and interface science, 2018, 525: 136-142. 王帆, 吴秀明, 张旭红, 等. 有机/无机复合光催化剂的合成与表征[C]//中国化学会第30届学术年会摘要集-第27分会: 光化学, 2016. GE L, HAN C, LIU J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange[J]. Applied Catalysis B: Environmental, 2011, 108: 100-107. PENG X S, KADAVANICH M C, ALIVISATOS A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. J Am Chem Soc, 1997, 119: 7019-7029. 孙聆东, 付雪峰, 钱程, 等. 水热法合成CdS/ZnO核壳结构纳米微粒[J]. 高等学校化学学报, 2001, 22(6): 879-882. WEI W, ZHU Y. TiO2@perylene diimide full-spectrum photocatalysts via semi-core-shell structure[J]. SMALL, 2019: 1903933. PAN C, XU J, WANG Y, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Advanced Functional Materials, 2012, 22(7): 1518-1524. LUO S, KE J, YUAN M, et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants[J]. Applied Catalysis B: Environmental, 2018, 221: 215-222. QIAN X, YUE D, TIAN Z, et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs[J]. Applied Catalysis B: Environmental, 2016, 193: 16-21. 王琪, 曾曦, 刘心中. Bi2WO6复合g-C3N4的制备及其光催化降解甲苯的研究[J]. 化学与粘合, 2019, 41(5):350-354,372. NIE L, DUAN B, LU A, et al. Pd/TiO2@carbon microspheres derived from chitin for highly efficient photocat-alytic degradation of volatile organic compounds[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 1658-1666.
点击查看大图
计量
- 文章访问数: 321
- HTML全文浏览量: 23
- PDF下载量: 67
- 被引次数: 0