CATALYTIC PERFORMANCE OF TYPICAL VOCs OVER MnCeOx/ZEOLITE CATALYST
-
摘要: 以沸石为载体制备了锰铈复合氧化物催化剂(记为:MnCeOx/沸石催化剂),探究了催化剂对工业典型VOCs的二元催化性能,并对催化剂进行BET、XRD及SEM表征。结果表明:Ce的加入,促进了Mn的分散,提高了MnCeOx/沸石催化剂的活性;当n(Mn)∶n(Ce)为1∶1,负载率为20%,焙烧温度为500℃时,催化剂的活性最高,其对甲苯的起燃温度(T50)和完全燃烧温度(T90)分别为155,255℃;单组分实验中,催化剂对3种有机物均表现出较高活性,转化率达到90%时的反应温度均在275℃以下,其活性顺序为乙酸乙酯>甲苯>丙酮,主要受反应活化能大小及分子极性的影响;二元催化实验中,由于竞争吸附的影响,3种物质的T50和T90较单组分均分别提高了8~13,14~38℃。Abstract: Manganese-cerium composite oxides catalyst was prepared with zeolite as the carrier. The binary catalytic performance of the catalyst for industrial typical VOCs was investigated, and the catalyst was characterized by BET, XRD and SEM. Results showed that the addition of the cerium promoted the dispersion of the manganese and improved the activity of the composite oxide catalyst.The catalytic performance of MnCeOx/zeolite was the best with n(Mn)∶n(Ce) of 1∶1, loading ratio of 20% and calcination temperature of 500 ℃, with initial and complete combustion temperatures of toluene at 155 ℃ and 255 ℃, respectively. In the single component experiment, the catalysts for three organics all showed higher activity, and the temperature of conversion of 90% was below 275 ℃; the catalytic performance decreased in the order of ethyl acetate, toluene and acetone, which was mainly affected by the level of the activation energy as well as their polarity of molecule. In the binary catalytic experiment, T50 and T90 of three organics increased respectively by 8~13 ℃ and 14~38 ℃ than that in the single component experiment, due to the competitive adsorption.
-
Key words:
- VOCs /
- manganese-cerium composite oxides /
- binary catalysis
-
KAMAL M S,RAZZAK S A,HOSSAIN M M.Catalytic oxidation of volatile organic compounds (VOCs): a review[J]. Atmospheric Environment,2016,140: 117-134. 金凌云,何迈,鲁继青,等.Y2O3涂层负载Pd整体式催化剂的制备和催化性能[J].催化学报,2007,28(7):635-640. LI W B, WANG J X,GONG H. Catalytic combustion of VOCs on non-noble metal catalysts[J].Catalysis Today, 2010,148(1/2): 81-87. SAQER S M, KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Applied Catalysis B: Environmental, 2011,103(3/4): 275-286. ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[J]. Catalysis Today, 2016,264:270-278. LUO M M, CHENG Y, PENG X Z, et al.Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalyticcombustion of toluene[J]. Chemical Engineering Journal, 2019,369:758-765. CASTAÑO M H,MOLINA R,MORENO S. Cooperative effect of the Co-Mn mixed oxides for the catalytic oxidation of VOCs:influence of the synthesis method[J]. Applied Catalysis A:General,2015, 492:48-59. DOGGALI P,TERAOKA Y,MUNGSE P. Combustion of volatile organic compounds over Cu-Mn based mixed oxide type catalysts supported on mesoporous Al2O3,TiO2 and ZrO2[J]. Journal of Molecular Catalysis A: Chemical, 2012,358(6):23-30. 张广福, 季生福, 万会军, 等. 铜锰基SBA-15催化剂的制备及对甲苯燃烧消除的催化性能[J]. 北京化工大学学报, 2008, 35(1):5-10. 李树娜,宋佩,张金丽,等.CeO2-MnOx催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J].燃料化学学报, 2018, 46(5):615-624. ZHANG L, PENG Y X, ZHANG J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J].Chinese Journal of Catalysis, 2016, 37:800-809. 彭鹏,张占全,王有和,等.多级孔分子筛的制备与催化应用[J].化学进展,2013,25(12):2028-2037. PENG J, BAN H Y, ZHANG X T, et al. Binary adsorption equilibrium of propylene and ethylene on silicalite-1: prediction and experiment[J]. Chemical Physics Letters, 2005, 401(1/2/3):94-98. YU J W, NERETNIEKS I. Single-component and multicomponent adsorption equilibria on activated carbon of methylcyclohexane, toluene, and isobutyl methyl ketone[J]. Industrial and Engineering Chemistry Research, 1990, 29(2): 220-231. 曹利,黄学敏,宋文斌,等. 用修正的E-L模型描述二元VOCs气体在活性炭上的吸附平衡[J].环境工程学报,2011, 5(10):2326-2330. JOSÉ I.GUTIÉRREZ-ORTIZ, BEATRIZDE RIVAS, RUBÉN LÓPEZ-FONSECA,et al. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions[J]. Applied Catalysis B: Environmental, 2006, 65(3/4): 191-200. HE C, LIN Y, ZHANG X Y,et al. Deep catalytic oxidation of benzene, toluene, ethyl acetate over Pd/SBA-15 catalyst: reaction behaviors and kinetics[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(5): 705-715. 曹利, 黄学敏, 冯燕. 掺杂CeO2的CuMnOx复合氧化物催化剂的制备及对甲苯催化燃烧性能研究[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(5): 729-733. 郝吉明,马广大. 大气污染控制工程[M]. 2版. 北京:高等教育出版社,2002. 期刊类型引用(11)
1. 李源,肖致美,毕晓辉,蔡子颖,徐虹,高璟赟,郑乃源,杨宁. 天津市“十三五”期间O_3污染特征和驱动因子. 环境科学. 2023(08): 4241-4249 . 百度学术
2. 李源,白宇,郭瑞,刘彬,孔君,李丹. 天津市北辰区PM_(2.5)污染特征及来源分析. 环境影响评价. 2023(06): 63-69 . 百度学术
3. Yunyan LI,Jian DAI. Construction and Implementation Approaches of Ecological Compensation Mechanism for Coordinated Control of Air Pollution in Beijing-Tianjin-Hebei Region. Meteorological and Environmental Research. 2022(01): 43-48 . 必应学术
4. 王琰玮,王媛,张增凯,张蓝心,单梅. 不同季节天津市PM_(2.5)与O_3潜在源区及传输路径分析. 环境科学研究. 2022(03): 673-682 . 百度学术
5. 白宇,李源,郭瑞,孔君,刘彬. 气象因子对天津市臭氧浓度的影响分析. 环境影响评价. 2022(02): 14-19 . 百度学术
6. 王玲玲,陈婷,邹长武,罗伟. 自贡市城区MAIAC AOD和PM2.5时空特征及气象因素分析. 湖北农业科学. 2022(21): 39-44+72 . 百度学术
7. 李源,陆彦彬,白宇,杨宁,高璟赟,董海燕,孔君,刘彬. 基于天津臭氧污染特点的气象条件与天气分型研究. 中国环境监测. 2022(05): 56-64 . 百度学术
8. 但扬彬,胡恭任,卞雅慧,陈衍婷,陈进生,王珊珊,于瑞莲. 漳州大气PM_(2.5)污染特征与区域传输影响分析. 地球与环境. 2021(02): 134-146 . 百度学术
9. 苏明伟,张伟峰,郑润禾. 基于小波分析的PM_(2.5)分布特征及差异分析. 环境工程. 2021(05): 96-103 . 本站查看
10. 张敬巧,罗达通,方小云,王涵,王少博,刘锐泽,王淑兰. 廊坊经济技术开发区冬季PM_(2.5)化学组成特征及来源分析. 环境污染与防治. 2021(10): 1297-1303 . 百度学术
11. 刘姣姣,陈思,赵洁,叶堤. 重庆市PM_(2.5)污染特征分析及预报结果评估. 环境科学与技术. 2020(06): 85-93 . 百度学术
其他类型引用(9)
-

计量
- 文章访问数: 266
- HTML全文浏览量: 41
- PDF下载量: 148
- 被引次数: 20