CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机废物厌氧发酵生物合成己酸研究进展

朱文彬 高明 阴紫荷 吴川福 汪群慧

朱文彬, 高明, 阴紫荷, 吴川福, 汪群慧. 有机废物厌氧发酵生物合成己酸研究进展[J]. 环境工程, 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
引用本文: 朱文彬, 高明, 阴紫荷, 吴川福, 汪群慧. 有机废物厌氧发酵生物合成己酸研究进展[J]. 环境工程, 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
Citation: ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020

有机废物厌氧发酵生物合成己酸研究进展

doi: 10.13205/j.hjgc.202001020
基金项目: 

北京市自然科学基金项目(8182035);国家自然科学基金项目(51708024)。

详细信息
    作者简介:

    朱文彬(1994-),男,博士,主要研究方向为固体废弃物减量化及综合利用。2221330183@qq.com

    通讯作者:

    汪群慧(1959-),女,博士,教授,主要研究方向为固体废弃物减量化及综合利用。Wangqh59@sina.com

RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION

  • 摘要: 厌氧发酵处理有机废物并合成高价值羧酸盐的技术日趋成熟。尤其是己酸作为产物之一,因其附加值高,易于分离,用途广泛,越来越受到关注。微生物合成己酸需要电子供体及受体。详细介绍了乙醇、乙酸分别作为电子供体、受体合成己酸的机理——逆β氧化反应,总结合成己酸底物以及影响合成的因素(温度、pH值、水力停留时间、竞争路径、氢气分压、底物比例、氮源等)。目前采用科氏梭菌以乙醇为电子供体来合成己酸的技术较成熟,探索了利用乳酸为电子供体合成己酸的代谢机理,并指出开发乳酸转化合成己酸的技术可成为未来发展方向。
  • AGLER M T, WRENN B A, ZINDER S H, et al. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform[J]. Trends in Biotechnology, 2011, 29(2): 70-78.
    GROOTSCHOLTEN T I M, STEINBUSCH K J J, HAMELERS H V M, et al. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production[J]. Bioresource Technology, 2013, 135(2): 440-445.
    STEINBUSCH K J J, HAMELERS H V M, PLUGGE C M, et al. Biological formation of caproate and caprylate from acetate: Fuel and chemical production from low grade biomass[J]. Energy & Environmental Science, 2010, 4(1): 216-224.
    AGLER M T, SPIRITO C M, USACK J G, et al. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates[J]. Energy & Environmental Science, 2012, 5(8): 8189-8192.
    GROOTSCHOLTEN T I M, STRIK D P B T, STEINBUSCH K J J, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol[J]. Applied Energy, 2014, 116(3): 223-229.
    YIN Y A, ZHANG Y F, KARAKASHEV D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources[J]. Bioresource Technology, 2017, 241: 638-644.
    KUZNETSOV Y I, IBATULLIN K A. On the inhibition of the carbon dioxide corrosion of steel by carboxylic acids[J]. Protection of Metals, 2002, 38(5): 439-444.
    ALY M, BAUMGARTEN E. Hydrogenation of hexanoic acid with different catalysts[J]. Applied Catalysis A General, 2001, 210(1): 1-12.
    RENZ M. Ketonization of carboxylic acids by decarboxylation: mechanism and scope[J]. Cheminform, 2005,6:979-988.
    KENEALY W R, CAO Y, WEIMER P J. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol[J]. Applied Microbiology and Biotechnology, 1995, 44(3/4): 507-513.
    GREENSTEIN G R. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (14th edition)[M]. Philadelphia: Philadelphia University, 2001.
    VAN I F, DE BUCK J, BOYEN F, et al. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis[J]. Applied & Environmental Microbiology, 2004, 70(6): 3582-6588.
    ZENTEK J, BUCHHEIT-RENKO S, FERRARA F, et al. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets[J]. Animal Health Research Reviews, 2011, 12(1): 83-93.
    BUTKUS M A, Hughes K T, Bowman D D, et al. Inactivation of Ascaris suum by short-chain fatty acids[J]. Applied & Environmental Microbiology, 2011, 77(1): 363-366.
    WOOLFORD M K. Microbiological screening of the straight chain fatty acids (C1-C12) as potential silage additives[J]. Journal of the Science of Food & Agriculture, 2010, 26(2): 219-228.
    LEVY P F, SANDERSON J E, KISPERT R G, et al. Biorefining of biomass to liquid fuels and organic chemicals[J]. Enzyme and Microbial Technology, 1981, 3(3): 207-215.
    WITHOLT B, KESSLER B. Perspectives of medium chain length poly (hydroxyalkanoates), a versatile set of bacterial bioplastics[J]. Current Opinion in Biotechnology, 1999, 10(3): 279-285.
    VASUDEVAN D, RICHTER H, ANGENENT L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151(1): 378-382.
    GE S J, USACK J G, SPIRITO C M, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015, 49(13): 8012-8021.
    ZHU X Y, TAO Y, LIANG C, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production[J]. Scientific Reports, 2015, 5: 14360-14367.
    GROOTSCHOLTEN T I M, BORGO F, KINSKY D, et al. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol[J]. Biomass & Bioenergy, 2013, 48(1): 10-16.
    AGLER M T, SPIRITO C M, USACK J G, et al. Development of a highly specific and productive process for n-caproic acid production: applying lessons from methanogenic microbiomes[J]. Water Science & Technology, 2014, 69(1): 62-68.
    BARKER H A, TAHA S M. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol[J]. Journal of Bacteriology, 1942, 43(3): 347-363.
    BARKER H A, KAMEN M D, BORNSTEIN B T. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium Kluyveri[J]. Proceedings of the National Academy of Sciences of the United States of America, 1945, 31(12):373-381.
    DING H B, TAN G A, WANG J Y. Caproate formation in mixed-culture fermentative hydrogen production[J]. Bioresourse Technology, 2010, 101(24): 9550-9559.
    SEEDORF H, FRICKE F W, VEITH B, et al. The genome of clostridium kluyveri, a strict anaerobe with unique metabolic features[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 2128-2133.
    LONKAR S, FU Z, HOLTZAPPLE M. Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate[J]. Biotechnology & Bioengineering, 2016, 113(12): 2597-2604.
    STEINBUSCH K J J, ARVANITI E, HAMELERS H V M, et al. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation[J]. Bioresource Technology, 2009, 100(13): 3261-3267.
    KUCEK L A, NGUYEN M, ANGENENT L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93: 163-171.
    BORNSTEIN B T, BARKER H A. The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids[J]. Journal of Biological Chemistry, 1948, 172(2): 659-669.
    GROOTSCHOLTEN T I M, STEINBUSCH K J J, Hamelers H V M, et al. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter[J]. Bioresourse Technology, 2013, 136(12): 735-738.
    BYOUNG S J, BYUNG-CHUN, YOUNGSOON U, et al. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1[J]. Applied Microbiology & Biotechnology, 2010, 88(5): 1161-1167.
    HINO T, MIYAZAKI K, KURODA S, et al. Role of extracellular acetate in the fermentation of glucose by a ruminal bacterium, Megasphaera elsdenii[J]. Journal of General and Applied Microbiology, 1991, 37(1): 121-129.
    ZHU X Y, ZHOU Y, WANG Y, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6[J]. Biotechnology for Biofuels, 2017, 10(1): 102-113.
    KENEALY W R, WASELEFSKY D M. Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate[J]. Archives of Microbiology, 1985, 141(3): 187-194.
    GE S J, USACK J G, SPIRITO C M, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015, 49(13): 8012-8021.
    TOMLINSON N, BARKER H A. Carbon dioxide and acetate utilization by Clostridium kluyveri Ⅰ. Influence of nutritional conditions on utilization patterns[J]. Journal of Biological Chemistry, 1954, 209(2): 585-595.
    WERNER J J, KNIGHTS D, GARCIA M L, et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 4158-4163.
    HOLTZAPPLE M T, GRANDA C B. Carboxylate Platform: The mixalco process Part 1: comparison of three biomass conversion platforms[J]. Applied Biochemistry & Biotechnology, 2009, 156(1/3): 95-106.
  • 加载中
计量
  • 文章访问数:  218
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28

目录

    /

    返回文章
    返回