MECHANISM OF SYNTHESIZING PHB BY CUPRIAVIDUS NECATOR WITH WASTE COOKING OIL AS THECARBON SOURCE BASED ON METABOLOMICS ANALYSIS
-
摘要: 运用代谢组学方法研究Cupriavidus necator在不同培养条件下胞内代谢物的变化,寻找影响Cupriavidus necator合成聚-3-羟基丁酸酯(PHB)的生物标志物并探讨代谢机理。利用气相色谱-质谱法(GC/MS)分析不同pH (6、7、8、9)条件下培养Cupriavidus necator的代谢产物,应用偏最小二乘判别分析(PLS-DA)对代谢组学数据进行统计分析,同时结合代谢网络图分析影响PHB合成的代谢途径。PLS-DA分析结果表明:不同pH条件下,鸟氨酸、延胡索酸、β-D-葡萄糖、戊二酸、肌醇、丁酸、甘氨酸、L-天冬酰胺、d-葡萄糖、L-苏氨酸和缬氨酸11种物质表现出显著差异性。结合PLS-DA和代谢途径分析得出:甘氨酸、鸟氨酸、苏氨酸、天冬酰胺和延胡索酸是影响PHB合成的关键代谢物,这些物质通过TCA循环途径、氨基酸合成代谢以及丙酮酸合成降解等途径影响Cupriavidus necator合成PHB。
-
关键词:
- 餐厨废油 /
- Cupriavidus necator /
- 聚-3-羟基丁酸酯 /
- 代谢组学
Abstract: Metabolomics method based on gas chromatography-mass spectrometry (GC-MS) was used to analyze the intracellular metabolites of Cupriavidus necator to obtain potential metabolic biomarkers and reveal the mechanism of poly-3-hydroxybutyrate (PHB) accumulation. The metabolite levels of bacteria under different pH conditions such as 6, 7, 8 and 9 were investigated. The metabolites data was analyzed by partial least-squares discrimination analysis (PLS-DA), which presented distinct difference between the samples of four different conditions. As the pH changes, 11 substances showed significant differences, including ornithine, fumarate, β-D-glucose, glutaric acid, inositol, butyric acid, glycine, L-asparagine, d-glucose, L-threonine and valine. According to PLS-DA and metabolic pathway analysis, glycine, ornithine, threonine, sparagine and fumaric acid were potential metabolic biomarkers. These metabolites influenced PHB production through the metabolic pathways of TCA cycle pathway, amino acid anabolism and pyruvate synthesis degradation.-
Key words:
- waste cooking oil /
- Cupriavidus necator /
- poly-3-hydroxybutyrate(PHB) /
- metabonomics
-
MACRAE R M, WILKINSON J F. Poly-β-hyroxybutyrate metabolism in washed suspensions of bacillus cereus and bacillus megaterium[J]. Microbiology, 1958, 19(1): 210-222. 王攀, 邱银权, 陈锡腾,等. 以餐厨垃圾水解酸化液为碳源合成PHA研究[J]. 环境工程, 2018, 36(6): 145-149. 王攀, 邱银权, 陈锡腾,等. 利用餐厨垃圾水解酸化液合成PHA:耐盐菌的筛选及其产PHA特性[J]. 环境工程, 2018, 36(4): 78-82. 胡朝华, 张蕾, 张又弛,等. 非均相高效催化剂在餐厨废油转化生物柴油中的应用[J]. 环境工程, 2016, 34(9): 105-109. 任连海, 聂永丰, 刘建国. 利用餐厨废油制取生物柴油的影响因素研究[J]. 环境科学学报, 2013, 33(4): 1104-1109. GAHLAWAT G, SONI S K. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner[J]. Bioresource Technology, 2017, 243: 492-501. KOLLER M, MARSALEK L, DIAS M M D S, et al. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner[J]. New Biotechnology, 2017, 37: 24-38. IM D K, YUN S H, JUNG J-Y, et al. Comparison of metabolite profiling of Ralstonia eutropha H16 phaBCA mutants grown on different carbon sources[J]. Korean Journal of Chemical Engineering, 2017, 34(3): 797-805. MARUDKLA J, LEE W C, WANNAWILAI S, et al. Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545[J]. Journal of Biotechnology, 2018, 268: 12-20. JIN Y X, SHI L H, KAWATA Y. Metabolomics-based component profiling of Halomonas sp. KM-1 during different growth phases in poly (3-hydroxybutyrate) production[J]. Bioresource Technology, 2013, 140: 73-79. MONTIEL-JARILLO G, CARRERA J, Eugenia Suarez-Ojeda M. Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: effect of pH and N and P concentrations[J]. Science of the Total Environment, 2017, 583: 300-307. OH Y H, LEE S H, JANG Y-A, et al. Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution[J]. Bioresource Technology, 2015, 181: 283-290. TSUGAWA H, TSUJIMOTO Y, ARITA M, et al. GC/MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA)[J]. BMC Bioinformatics, 2011, 12(1): 131. 崔有为, 张宏宇. pH对嗜盐混合菌发酵挥发性有机酸混合物合成PHA的影响[J]. 化工学报, 2016, 67(10): 4431-4438. HUANG L K, LIU C, LIU Y J, et al. The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source[J]. Waste Management, 2016, 52: 77-85. 曹蒙, 缪恒锋, 赵明星,等. 脂肪酶强化水解餐厨油脂促进厌氧消化[J]. 食品与生物技术学报, 2018, 37(9): 977-986. 阿基业, 何骏, 孙润彬. 代谢组学数据处理:主成分分析十个要点问题[J]. 药学学报, 2018, 53(6): 929-937. SHIROLKAR A, CHAKRABORTY S, MANDAL T, et al. Plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans[J]. Journal of Ayurveda and Integrative Medicine, 2018, 9(2): 113-122. RAZA Z A, ABID S, BANAT I M. Polyhydroxyalkanoates: characteristics, production, recent developments and applications[J]. International Biodeterioration & Biodegradation, 2018, 126: 45-56. ALAGESAN S, MINTON N P, MALYS N. 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16[J]. Metabolomics, 2017, 14(1): 9. CASTILLO T, HEINZLE E, PEIFER S, et al. Oxygen supply strongly influences metabolic fluxes, the production of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinelandii[J]. Process Biochemistry, 2013, 48(7): 995-1003. RAMÍREZ-TRUJILLO J A, DUNN M F, SUÁREZ-RODRÍGUEZ R, et al. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-beta-hydroxybutyrate during carbon starvation[J]. Annals of Microbiology, 2016, 66(2): 921-924. BORJIAN F, HAN J, HOU J, et al. The methylaspartate cycle in haloarchaea and its possible role in carbon metabolism[J]. The ISME Journal, 2016, 10(3): 546-557.
点击查看大图
计量
- 文章访问数: 276
- HTML全文浏览量: 27
- PDF下载量: 10
- 被引次数: 0