中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水处理高级氧化法活性物种生成机制及其技术特征分析

叶国杰 王一显 罗培 杨兴舟 韦景悦 胡芸 Sergei Preis 韦朝海

叶国杰, 王一显, 罗培, 杨兴舟, 韦景悦, 胡芸, Sergei Preis, 韦朝海. 水处理高级氧化法活性物种生成机制及其技术特征分析[J]. 环境工程, 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001
引用本文: 叶国杰, 王一显, 罗培, 杨兴舟, 韦景悦, 胡芸, Sergei Preis, 韦朝海. 水处理高级氧化法活性物种生成机制及其技术特征分析[J]. 环境工程, 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001
YE Guo-jie, WANG Yi-xian, LUO Pei, YANG Xing-zhou, WEI Jing-yue, HU Yun, SERGEI Preis, WEI Chao-hai. FORMATION MECHANISM OF ACTIVE SPECIES IN ADVANCED OXIDATION TECHNOLOGIES AND ANALYSIS ON ITS TECHNICAL CHARACTERISTICS IN WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001
Citation: YE Guo-jie, WANG Yi-xian, LUO Pei, YANG Xing-zhou, WEI Jing-yue, HU Yun, SERGEI Preis, WEI Chao-hai. FORMATION MECHANISM OF ACTIVE SPECIES IN ADVANCED OXIDATION TECHNOLOGIES AND ANALYSIS ON ITS TECHNICAL CHARACTERISTICS IN WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001

水处理高级氧化法活性物种生成机制及其技术特征分析

doi: 10.13205/j.hjgc.202002001
基金项目: 

国家自然基金(U190120075,51878290);广东省应用型科技研发专项资金项目(2015B020235005)

详细信息
    作者简介:

    叶国杰(1996-),男,硕士研究生,研究方向为高级氧化技术中高效催化剂及反应器设计。esgjye@mail.scut.edu.cn

    通讯作者:

    韦朝海(1962-),男,教授,博士生导师,研究方向为水污染控制理论与技术。cechwei@scut.edu.cn

FORMATION MECHANISM OF ACTIVE SPECIES IN ADVANCED OXIDATION TECHNOLOGIES AND ANALYSIS ON ITS TECHNICAL CHARACTERISTICS IN WATER TREATMENT

  • 摘要: 高级氧化技术(advanced oxidation processes,AOPs)因其具有氧化能力强、反应速率快、可提高废水的可生化性、二次污染少以及使用范围广等特点,在环境领域备受关注,已成功应用于废水中有毒有害、难降解污染物的预处理和深度处理。通过对相关文献进行较全面的统计与分析,梳理了水处理中典型AOPs的特征,着重阐述了活性物种的生成机制及其作用原理,分析技术过程的影响因素和优缺点,结合应用实例,强调各种技术在分解难降解污染物方面的特殊性与有效性,指出了在原理-技术-应用的多尺度结合方面,未来AOPs将为水处理领域带来更加广泛的学术空间与技术前景。
  • GLAZE W H. Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21(3):224-230.
    MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment:a critical review[J]. Water Research, 2018, 139:118-131.
    ROSENFELDT E J, LINDEN K G, CANONICA S, et al. Comparison of the efficiency of·OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2[J]. Water Research, 2006, 40(20):3695-3704.
    STASINAKIS A S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment:a mini review[J]. Global Nest Journal, 2008, 10(3):376-385.
    AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:a review[J]. Journal of Hazardous Materials, 2009, 170(2):520-529.
    BOCZKAJ G, FERNANDES A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions:a review[J]. Chemical Engineering Journal, 2017, 320:608-633.
    PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1):1-84.
    OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:principles and applications:a review[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(23):2577-2641.
    WANG J L, XU L J. Advanced oxidation processes for wastewater treatment:formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science & Technology, 2012, 42(3):251-325.
    CHENG M, LAI C, LIU Y, et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis[J]. Coordination Chemistry Reviews, 2018, 368:80-92.
    LIN S H, LO C C. Fenton process for treatment of desizing wastewater[J]. Water Research, 1997, 31(8):2050-2056.
    陈传好,谢波,任源,等. Fenton试剂处理废水中各影响因子的作用机制[J]. 环境科学, 2000, 21(3):93-96.
    KAVITHA V, PALANIVELU K. Destruction of cresols by Fenton oxidation process[J]. Water Research, 2005, 39(13):3062-3072.
    李春娟. 芬顿法和类芬顿法对水中污染物的去除研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
    YOON J, LEE Y, KIM S. Investigation of the reaction pathway of·OH radicals produced by Fenton oxidation in the conditions of wastewater treatment[J]. Water Science & Technology, 2001, 44(5):15-21.
    张旋,王启山. 高级氧化技术在废水处理中的应用[J]. 水处理技术, 2009, 35(3):24-28.
    刘晶冰,燕磊,白文荣,等. 高级氧化技术在水处理的研究进展[J]. 水处理技术, 2011, 37(3):11-17.
    RUPPERT G, BAUER R, HEISLER G. The photo-Fenton reaction:an effective photochemical wastewater treatment process[J]. Journal of Photochemistry & Photobiology A Chemistry, 1993, 73(1):75-78.
    ELMOLLA E S, CHAUDHURI M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process[J]. Journal of Hazardous Materials, 2010, 173(1):445-449.
    BENKELBERG H J, WARNECK P. Photodecomposition of iron(Ⅲ) hydroxo and sulfato complexes in aqueous solution:wavelength dependence of OH and SO4- quantum yields[J]. Journal of Physical Chemistry, 1995, 99(14):5214-5221.
    WANG Z H, MA W H, CHEN C C, et al. Photochemical coupling reactions between Fe(Ⅲ)/Fe(Ⅱ), Cr(Ⅵ)/Cr(Ⅲ), and polycarboxylates:inhibitory effect of Cr species[J]. Environmental Science & Technology, 2008, 42(19):7260-7266.
    FENG J Y, HU X J, YUE P L, et al. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction[J]. Water Research, 2003, 37(15):3776-3784.
    ELMOLLA E, CHAUDHURI M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of Hazardous Materials, 2009, 170(2):666-672.
    MALATO S, BLANCO J, CáCERES J, et al. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy[J]. Catalysis Today, 2002, 76(2):209-220.
    HERMOSILLA D, CORTIJO M, HUANG C P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. Science of the Total Environment, 2009, 407(11):3473-3481.
    张乃东,郑威. Fenton法在水处理中的发展趋势[J]. 化工进展, 2001, 20(12):1-3.
    FOLLER P C, BOMBARD R T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen[J]. Journal of Applied Electrochemistry, 1995, 25(7):613-627.
    LIU Z P, ZHONG X, AI Z H. Treatment of municipal sewage by electro-Fenton reaction using a nanoscale Fe/ACF composites cathode[J]. Journal of Huazhong Normal University, 2008,1:65-67.
    方建章,李浩,雷恒毅. 电生成Fenton试剂处理染料废水[J]. 化工环保, 2004, 24(4):284-287.
    KURT U, APAYDIN O, GONULLU M T. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process[J]. Journal of Hazardous Materials, 2007, 143(1/2):33-40.
    田法. EDTA改性电-Fenton反应降解DMP的研究[D]. 南昌:南昌大学, 2007.
    QIANG Z M, CHANG J H, HUANG C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]. Water Research, 2002, 36(1):85-94.
    戴丽雅,张宏波,王谦,等. 超声-芬顿法降解工业染料中间体废水[J]. 水处理技术, 2017(4):76-78,84.
    MA Y, SUNG C. Investigation of carbofuran decomposition by a combination of ultrasound and Fenton process[J]. Sustainable Environment Research, 2010, 20(4):213-219.
    GABRIEL J, SHAH V, NESMERAK K, et al. Degradation of polycyclic aromatic hydrocarbons by the copper(Ⅱ)-hydrogen peroxide system[J]. Folia Microbiologic, 2000, 45(6):573-575.
    BEN-MOSHE T, DROR I, BERKOWITZ B. Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts[J]. Applied Catalysis B:Environmental, 2009, 85(3):207-211.
    FATHY N A, EL-SHAFEY S E, EL-SHAFEY O I, et al. Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):858-864.
    NEMES A, Fã BIã N I N, GORDON G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution[J]. Ozone Science & Engineering, 2000, 22(3):287-304.
    BUEHLERR E, STAEHELIN J, HOIGNE J. Ozone decomposition in water studied by pulse radiolysis. 1. perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates[J]. The Journal of Physical Chemistry, 1984, 88(12):2560-2564.
    周鹏,张静,李旺,等. 天然水体中臭氧链式分解模拟研究[J]. 黑龙江大学自然科学学报, 2013, 30(5):658-663.
    袁蓉芳,田烨,施春红,等. 臭氧接触池臭氧投加方式的优化[J]. 环境科学研究, 2013, 26(9):1014-1021.
    HEWES C G, DAVISON R R. Renovation of waste water by ozonation[J]. Water, 1972,69:71-80.
    BHAT N N, GUROL M D. Oxidation of chlorobenzene by ozone and heterogeneous catalytic ozonation[C]//27th industrial waste mid-at-lantic conference. bethlehem, PA, USA, 1995:371.
    KASPRZYK-HORDERN B, ZIółEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B:Environmental, 2003, 46(4):639-669.
    MA J, GRAHAM N J D. Preliminary investigation of manganese-catalyzed ozonation for the destruction of atrazine[J]. Ozone Science & Engineering, 1997, 19(3):227-240.
    PINES D S, RECKHOW D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Environmental Science & Technology, 2002, 36(19):4046.
    RAKITSKAYA T L, ENNAN A A, GRANATYUK I V, et al. Kinetics and mechanism of low-temperature ozone decomposition by Co-ions adsorbed on silica[J]. Catalysis Today, 1999, 53(4):715-723.
    WU C H, KUO C Y, CHANG C L. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor[J]. Journal of Hazardous Materials, 2008, 154(1):748-755.
    朱秋实,陈进富,姜海洋,等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4):1010-1014.
    PINES D S, RECKHOW D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Environmental Science & Technology, 2002, 36(19):4046-4051.
    BULANIN K M, LAVALLEY J C, Tsyganenko A A. IR spectra of adsorbed ozone[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1995, 101(2/3):153-158.
    FARIA P C C, óRFãO J J M, PEREIRA M F R. A novel ceria-activated carbon composite for the catalytic ozonation of carboxylic acids[J]. Catalysis Communications, 2008, 9(11):2121-2126.
    REN Y M, DONG Q, FENG J, et al. Magnetic porous ferrospinel NiFe2O4:a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water[J]. Journal of Colloid & Interface Science, 2012, 382(1):90-96.
    KASPRZYK-HORDERN B, ANDRZEJEWSKI P, BROWSKA A D J M, et al. MTBE, DIPE, ETBE and TAME degradation in water using perfluorinated phases as catalysts for ozonation process[J]. Applied Catalysis B:Environmental, 2004, 51(1):51-66.
    ZHANG T, LI W W, CROUé J P. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water[J]. Applied Catalysis B Environmental, 2012, 121/122(25):88-94.
    BING J S, HU C, ZHANG L L. Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone[J]. Applied Catalysis B Environmental, 2017, 202:118-126.
    洪浩峰,潘湛昌,徐阁,等. 活性炭负载催化剂臭氧催化氧化处理印染废水研究[J]. 工业用水与废水, 2010, 41(3):29-33.
    ZHANG F Z, WU K Y, ZHOU H T, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater[J]. Journal of Environmental Management, 2018,224:376-386.
    WU K Y, ZHANG F Z, WU H Z, et al. The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide[J]. Environmental Science and Pollution Research, 2018, 25(3):2389-2400.
    MARTIUS R C, CARDOSO M, DANTAS R F, et al. Catalytic studies for the abatement of emerging contaminants by ozonation[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(9):1611-1618.
    ZHANG F Z, WEI C H, HU Y, et al. Zinc ferrite catalysts for ozonation of aqueous organic contaminants:phenol and bio-treated coking wastewater[J]. Separation and Purification Technology, 2015, 156(2):625-635.
    BELTRáN F J, RIVAS F J, FERNáNDEZ L A, et al. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon[J]. Industrial & Engineering Chemistry Research, 2002, 41(25):6510-6517.
    ZHANG T, LI C J, MA J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting·OH generation from aqueous ozone:Property and activity relationship[J]. Applied Catalysis B:Environmental, 2008, 82(1):131-137.
    RAO Y F, CHU W. Reaction mechanism of linuron degradation in TiO2 suspension under visible light irradiation with the assistance of H2O2[J]. Environmental Science & Technology, 2009, 43(16):6183-6189.
    VINODGOPAL K, KAMAT P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environmental Science & Technology, 1995, 29(3):841-845.
    雷乐成. 水处理高级氧化技术[M]. 哈尔滨:哈尔滨工业大学出版社, 2007.
    宋爽. 纳米二氧化钛光催化氧化技术处理垃圾渗滤液的研究[D]. 西安:长安大学, 2010.
    刘祥英,邬腊梅,柏连阳,等. TiO2光催化降解农药研究新进展[J]. 中国农学通报, 2010, 26(12):203-208.
    LIU M, INDE R, NISHIKAWA M, et al. Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts[J]. ACS Nano, 2014, 8(7):7229-7238.
    YOU S Z, HU Y, LIU X C, et al. Synergetic removal of Pb(Ⅱ) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light[J]. Applied Catalysis B:Environmental, 2018,232:288-298.
    BARAN T, MACYK W. Photocatalytic oxidation of volatile pollutants of air driven by visible light[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 241(4):8-12.
    LI S X, FENG Z T, HU Y, et al. In-situ synthesis and high-efficiency photocatalytic performance of Cu(Ⅰ)/Cu(Ⅱ) inorganic coordination polymer quantum sheets[J]. Inorganic Chemistry, 2018, 57(21):13289-13295.
    LI S X, SUN S L, WU H Z, et al. Effects of electron-donating groups on the photocatalytic reaction of MOFs[J]. Catalysis Science & Technology, 2018, 8(6):1696-1703.
    MARTINEZ-HUITLE C A, BRILLAS E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:a general review[J]. Applied Catalysis B:Environmental, 2009, 87(3/4):105-145.
    孙凤坤. 电化学氧化法去除磺胺二甲基嘧啶及其产物研究[D].邯郸:河北工程大学, 2018.
    MORAES P B, BERTAZZOLI R. Electrodegradation of landfill leachate in a flow electrochemical reactor[J]. Chemosphere, 2005, 58(1):41-46.
    LIU M, PREIS S, KORNEV I, et al. Pulsed corona discharge for improving treatability of coking wastewater[J]. Journal of Environmental Sciences, 2018, 64(2):306-316.
    ELEOTéRIO I C, FORTI J C, de Andrade A R. Electrochemical treatment of wastewater of veterinary industry containing antibiotics[J]. Electrocatalysis, 2013, 4(4):283-289.
    樊广萍,谢江坤,李睦,等. 电化学氧化技术在废水处理中的应用研究[J]. 净水技术, 2016,35(6):30-36.
    CHEN X M, GAO F R, CHEN G H. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation[J]. Journal of Applied Electrochemistry, 2005, 35(2):185-191.
    ZHANG C, JIANG Y H, LI Y L, et al. Three-dimensional electrochemical process for wastewater treatment:a general review[J]. Chemical Engineering Journal, 2013, 228(14):455-467.
    LUCK F. Wet air oxidation:past, present and future[J]. Catalysis Today, 1999, 53(1):81-91.
    SHIBAEVA I V, METALITSA D I, DENISOV E T. Oxidation of phenol with molecular oxygen in aqueous solution-2[J]. Kinetics & Catalysis, 1969, 10(6):1022-1026.
    马明. 湿式氧化法处理含油废水研究[D]. 大庆:东北石油大学, 2017.
    王健. 催化湿式氧化降解垃圾渗滤液模拟废水的研究[D]. 长春:吉林大学, 2008.
    石德智,张金露,胡春艳,等. 超临界水氧化技术处理污泥的研究与应用进展[J]. 化工学报, 2017, 68(1):37-49.
    吴锦华,韦朝海. 催化超临界水氧化废水处理技术的研究进展[J]. 环境工程, 2002, 20(4):7-10.
    SERIKAWA R M, USUI T, NISHIMURA T, et al. Hydrothermal flames in supercritical water oxidation:investigation in a pilot scale continuous reactor[J]. Fuel, 2002, 81(9):1147-1159.
    蔡毅,马承愚,彭英利,等. 超临界水氧化法处理丙烯腈剧毒废水的实验研究[J]. 工业水处理, 2006, 26(3):42-44.
    马承愚,朱飞龙,彭英利,等. 超临界水氧化法处理垃圾渗滤液的试验研究[J]. 中国给水排水, 2008, 24(1):102-104.
    赵保国,刘玉存,常双君. 超临界水氧化处理二硝基甲苯废水研究[J]. 火炸药学报, 2007, 30(2):71-74.
  • 加载中
计量
  • 文章访问数:  393
  • HTML全文浏览量:  37
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15

目录

    /

    返回文章
    返回