EFFECT OF ULTRAVIOLET DISINFECTION ON GROWTH AND SECRETION CHARACTERISTICS OF MICROORGANISM IN RECLAIMED WATER
-
摘要: 膜污堵是阻碍污水再生处理反渗透(RO)系统稳定、高效运行的突出问题。前期研究表明,RO系统常用的氯消毒预处理会导致微生物群落结构及代谢产物分泌特性发生显著改变,从而引起严重的生物污堵。为优化污水再生处理RO系统的预处理工艺选择,该研究全面考察了紫外线消毒对再生水中细菌的生长、群落结构和分泌特性的影响。结果表明:紫外线剂量为20,40,80 mJ/cm2时,对膜生物反应器出水中细菌的灭活率分别可达1log、3log、4log。紫外消毒后,存活细菌再培养时其生长迟滞期变长,稳定期细菌数量在紫外线剂量为40,80 mJ/cm2时分别比对照组降低18.6%和19.2%。高紫外线剂量下(40,80 mJ/cm2),变形菌门、β-变形菌纲、詹森菌属相对丰度有所增加。分泌特性方面,细菌胞外多聚物含量随紫外线剂量升高先减少后增多,且其中大分子物质增多,并表现出更强的RO膜污堵潜势。Abstract: Membrane fouling is a prominent problem that hinders the stable and efficient operation of reverse osmosis (RO) system for wastewater reclamation. Previous studies showed that chlorine disinfection, which was commonly used in RO system as the pretreatment could lead to significant change in microbial community structure and secretion characteristics, resulting in serious biofouling. In order to optimize the selection of pretreatment process for RO system in wastewater reclamation, the effect of ultraviolet (UV) disinfection on the growth, community structure and secretion characteristics of microorganism in reclaimed water was investigated. Results showed that when the UV dose was 20, 40 and 80 mJ/cm2, the inactivation rate of bacteria reached 1, 3 and 4 log, respectively. The lag period of bacterial growth was prolonged after UV disinfection. The biomass in stable period also decreased by 18.6% and 19.2% compared with the control group, when the UV dose was 40 and 80 mJ/cm2. The relative abundance of Proteobacteria phylum, Betaproteobacteria class and Janthinobacterium genus increased at higher UV dose (40, 80 mJ/cm2). In terms of secretion characteristics, the amount of extracellular polymeric substances (EPS) decreased firstly and then increased with the increase of UV dose, and the content of macromolecule substances in them increased after UV disinfection, showing higher potential of RO membrane fouling.
-
LI W, LIU Z F, HE C Y, et al. Water shortages raised a legitimate concern over the sustainable development of the drylands of northern China:evidence from the water stress index[J]. Science of The Total Environment, 2017,590:739-750. 王浩, 王建华. 中国水资源与可持续发展[J]. 中国科学院院刊,2012,27(3):352-358. 仇付国. 污水再生利用发展趋势及其风险评价[J]. 大众科技,2005(4):85-86. 胡洪营. 再生水水质安全评价与保障原理[M]. 北京:科学出版社,2011:515. 李国新, 颜昌宙, 李庆召. 污水回用技术进展及发展趋势[J]. 环境科学与技术,2009,32(1):79-83. 曲炜. 我国污水处理回用发展历程及特点[J]. 中国水利,2013(23):50-52. BARTELS C, WILF M, ANDES K, et al. Design considerations for wastewater treatment by reverse osmosis[J]. Water Science and Technology, 2005a, 51(6/7):473-482. BELLONA C, DREWES J E. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications:a pilot-scale study[J]. Water Research, 2007, 41(17):3948-3958. DEL PINO M P, DURHAM B. Wastewater reuse through dual-membrane processes:opportunities for sustainable water resources[J]. Desalination, 1999, 124(1):271-277. SINGH R. Analysis of energy usage at membrane water treatment plants[J]. Desalination and Water Treatment, 2011, 29(1/2/3):63-72. WESTERHOFF P, MOON H, MINAKATA D, et al. Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities[J]. Water Research, 2009,43(16):3992-3998. 孙迎雪, 胡洪营, 汤芳, 等. 城市污水再生处理反渗透系统RO浓水的水质特征[J]. 环境科学与技术,2015,38(1):72-79. KHEDR M G. Membrane fouling problems in reverse osmosis desalination applications[J]. Journal of Water Reuse & Desalination, 2000, 10(3):8-17. TAM L S, TANG T W, LAU G N, et al. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems[J]. Desalination, 2007, 202(1/2/3):106-113. FLEMMING H C. Reverse osmosis membrane biofouling[J]. Experimental Thermal and Fluid Science, 1997,14(4):382-391. GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination:water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9):2317-2348. FLEMMING H C, SCHAULE G, GRIEBE T, et al. Biofouling:the Achilles heel of membrane processes[J]. Desalination, 1997, 113(2):215-225. MATIN A, KHAN Z, ZAIDI S, et al. Biofouling in reverse osmosis membranes for seawater desalination:phenomena and prevention[J]. Desalination, 2011,281:1-16. TANG F, HU H Y, SUN L J, et al. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation[J]. Water Research, 2016,90:329-336. BRANDA S S, VIK Å, FRIEDMAN L, et al. Biofilms:the matrix revisited[J]. Trends in Microbiology, 2005,13(1):20-26. MAYER C, MORITZ R, KIRSCHNER C, et al. The role of intermolecular interactions:studies on model systems for bacterial biofilms[J]. International Journal of Biological Macromolecules, 1999,26(1):3-16. SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnology Advances, 2010,28(6):882-894. TSUNEDA S, AIKAWA H, HAYASHI H, et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface[J]. FEMS Microbiology Letters, 2003,223(2):287-292. HERZBERG M, KANG S, ELIMELECH M. Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes[J]. Environmental Science & Technology, 2009,43(12):4393-4398. 于童. 污水再生处理反渗透膜面细菌生物污堵潜势研究[D]. 北京:清华大学,2018. JIANG S X, LI Y N, LADEWIG B P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of the Total Environment, 2017,595:567-583. PANDEY S R, JEGATHEESAN V, BASKARAN K, et al. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent:a review[J]. Reviews in Environmental Science and Bio/Technology, 2012,11(2):125-145. VROUWENVELDER J, VAN DER KOOIJ D. Diagnosis, prediction and prevention of biofouling of NF and RO membranes[J]. Desalination, 2001,139(1):65-71. KHAN M T, HONG P Y, NADA N, et al. Does chlorination of seawater reverse osmosis membranes control biofouling?[J] Water Research, 2015,78:84-97. WANG Y H, WU Y H, TONG X, et al. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation[J]. Water Research, 2019,154:246-257. LAZAROVA V, SAVOYE P, JANEX M L, et al. Advanced wastewater disinfection technologies:state of the art and perspectives[J]. Water Science and Technology, 1999,40(4/5):203-213. HIJNEN W A M, BEERENDONK E F, MEDEMA G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water:a review[J]. Water Research, 2006, 40(1):3-22. BOLTON J R, LINDEN K G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments[J]. Journal of Environmental Engineering, 2003,129(3):209-215. 郭美婷. 污水紫外线消毒中病原指示菌的复活特性及控制方法研究[D]. 北京:清华大学,2008. WANG Y H., WU, Y.H., TONG, X., et al. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation[J]. Water Research, 2019, 154:246-257. WANG Z P, ZHANG T. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Research, 2010,44(18):5499-5509. LYKO S, WINTGENS T, AL-HALBOUNI D, et al. Long-term monitoring of a full-scale municipal membrane bioreactor:characterisation of foulants and operational performance[J]. Journal of Membrane Science, 2008,317(1):78-87. ZHANG W J, CAO B D, WANG D S, et al. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning:effects of pH and ferrate dosage[J]. Biochemical Engineering Journal, 2016,106:37-47.
点击查看大图
计量
- 文章访问数: 188
- HTML全文浏览量: 28
- PDF下载量: 10
- 被引次数: 0