HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE
-
摘要: 通过浸渍加焙烧制备出膨胀石墨(EG)负载CuO复合材料(CuO/EG),并通过X射线衍射和扫描电镜对催化剂的晶体结构和表面形貌进行表征分析。将复合材料用于活化过硫酸盐(过氧单磺酸钾,PMS)降解盐酸四环素(TC),在焙烧温度为500℃,负载量为1:4,催化剂投加量为0.2 g/L,PMS投加量为0.2 g/L的条件下,CuO/EG/PMS体系在20 min内即可将TC完全降解。同时,研究发现该复合催化体系在较广pH范围(3~9)内,以及无机阴离子共存的条件下均保持高效的催化性能。催化剂循环使用5次后,仍具有较高的催化活性。捕获实验表明,催化降解体系中起主要作用的是SO4-·。此外,CuO/EG/PMS体系对于染料罗丹明B和酸性红G同样具有优异的降解效果,表明催化剂具有较好的普遍适用性。Abstract: A CuO-doped expanded graphite composite (CuO/EG) was prepared via impregnation and calcination. The properties including crystalline structure and morphology of CuO/EG were characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The as-prepared catalyst was applied for catalytic degradation of tetracycline hydrochloride (TC) wastewater by activation of peroxymonosulfate (PMS). TC could be completely degraded by CuO/EG/PMS system within 20 min under the reaction condition of calcination temperature 500℃, doping ratio of CuO to EG of 1:4, 0.2 g/L catalyst and 0.2 g/L PMS. CuO/EG/PMS system demonstrated excellent catalytic performance in a wide range of pH (3~9) and under the coexistence of inorganic anions. Moreover, the CuO/EG catalyst still exhibited good reusability even after 5 successive runs for TC degradation. Quenching experiments confirmed that SO4-·radicals were the dominant reactive species during the degradation process. In addition, CuO/EG/PMS system exhibited satisfactory removal of dyes such as Rhodamine B and acid red G, indicating that the catalyst had a novel universal applicability.
-
Key words:
- copper oxide /
- expanded graphite /
- peroxymonosulfate /
- sulfate radical /
- tetracycline hydrochloride
-
HIRSCH R, TERNES T, HABERER K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1/2):109-118. WANG H W, ZHANG D Y, MOU S Y, et al. Simultaneous removal of tetracycline hydrochloride and As (Ⅲ) using poorly-crystalline manganese dioxide[J]. Chemosphere, 2015, 136:102-110. DENG H, MCSHAN D, ZHANG Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics[J]. Environmental Science & Technology, 2016, 50(16):8840-8848. WANG Y X, XIE Y B, SUN H Q, et al. 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2016, 301:56-64. ZHOU R, ZHAO J, SHEN N F, et al. Efficient degradation of 2, 4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles[J]. Chemosphere, 2018, 197:670-679. LI C X, CHEN C B, LU J Y, et al. Metal organic framework-derived CoMn2O4 catalyst for heterogeneous activation of peroxymonosulfate and sulfanilamide degradation[J]. Chemical Engineering Journal, 2018, 337:101-109. 李社锋, 王文坦, 邵雁, 等. 活化过硫酸盐高级氧化技术的研究进展及工程应用[J]. 环境工程, 2016, 34(9):171-174. 王兵, 李娟, 莫正平, 等. 基于硫酸自由基的高级氧化技术研究及应用进展[J]. 环境工程, 2012, 30(4):53-57. LIANG S X, JIA Z, ZHANG W C, et al. Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under photo-enhanced catalytic oxidation:a comparative study[J]. Applied Catalysis B:Environmental, 2018, 221:108-118. SILVEIRA J E, PAZ W S, GARCIA-MUNOZ P, et al. UV-LED/ilmenite/persulfate for azo dye mineralization:the role of sulfate in the catalyst deactivation[J]. Applied Catalysis B:Environmental, 2017, 219:314-321. BABU S G, APARAN P, SATISHKUMAR G, et al. Ultrasound-assisted mineralization of organic contaminants using a recyclable LaFeO3 and Fe3+/persulfate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 34:924-930. 高焕方, 龙飞, 曹园城, 等. 新型过硫酸盐活化技术降解有机污染物的研究进展[J]. 环境工程学报, 2015, 9(12):5659-5664. LI X M, GUAN G Q, DU X, et al. A sea anemone-like CuO/Co3O4 composite:an effective catalyst for electrochemical water splitting[J]. Chemical Communications, 2015, 51(81):15012-15014. DEKA P, DEKA R C, BHARALI P. Porous CuO nanostructure as a reusable catalyst for oxidative degradation of organic water pollutants[J]. New Journal of Chemistry, 2016, 40(1):348-357. 唐琪, 王玉如, 郭菁豪,等. CuO活化过硫酸盐对孔雀石绿的降解[J]. 环境工程学报, 2017, 11(4):2084-2090. DU X D, ZHANG Y Q, HUSSAIN I, et al. Insight into reactive oxygen species in persulfate activation with copper oxide:activated persulfate and trace radicals[J]. Chemical Engineering Journal, 2017, 313:1023-1032. DING X H, WANG R, ZHANG X, et al. A new magnetic expanded graphite for removal of oil leakage[J]. Marine Pollution Bulletin, 2014, 81(1):185-190. 李彦, 李鹏, 朱群志, 等. 硝酸盐/膨胀石墨复合相变材料的热性能[J]. 硅酸盐学报, 2018, 46(5):625-632. 黄绵峰, 郑治祥, 徐光青, 等. 膨胀石墨负载纳米二氧化钛光催化剂的制备、表征与其光催化性能[J]. 硅酸盐学报, 2008, 36(3):325-329,336. 徐从斌, 杨文杰, 孙宏亮, 等. 膨胀石墨负载零价铁的合成及其对水中Pb(Ⅱ)去除效果与机制[J]. 无机材料学报, 2018, 33(1):41-47. LEE H, KIM H, WEON S, et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds[J]. Environmental Science & Technology, 2016, 50:10134-10142. CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113:80-88. YANG S Y, XIAO T, ZHANG J, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution[J]. Separation and Purification Technology, 2015, 143:19-26. SUN H Q, LIU S Z, ZHOU G L, et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(10):5466-5471. YANG S Y, YANG X T, SHAO X, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials, 2011, 186(1):659-666. ZHANG J, YU J G, JARONIEC M, et al. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance[J]. Nano Letters, 2012, 12(9):4584-4589. 王宏杰, 高亚光, 赵子龙, 生物炭基催化剂制备对其催化降解Ni-EDTA性能影响[J]. 化工学报, 2018, 69(6):2782-2789. LI H X, WAN J Q, MA Y W, et al. Synthesis of novel core-shell Fe0@Fe3O4 as heterogeneous activator of persulfate for oxidation of dibutyl phthalate under neutral conditions[J]. Chemical Engineering Journal, 2016, 301:315-324. FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280:514-524. AL-ANAZI A, ABDELRAHEEM W H, HAN C, et al. Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid[J]. Applied Catalysis B:Environmental, 2018, 221:266-279. ZHAO L, HOU H, FUJII A, et al. Degradation of 1, 4-dioxane in water with heat-and Fe2+-activated persulfate oxidation[J]. Environmental Science and Pollution Research, 2014, 21(12):7457-7465. YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology, 2014, 48(4):2344-2351. BENNEDSEN L R, MUFF J, Sogaard E G. Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11):1092-1097. 李永涛, 赖连珏, 岳东. 无机阴离子对热活化过硫酸盐体系中降解MDEA模拟废水的影响[J]. 环境工程学报, 2018, 12(3):788-795. JI Y, DONG C, KONG D, et al. Heat-activated persulfate oxidation of atrazine:implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263:45-54. LI J, REN Y, JI F Z, et al. Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles[J]. Chemical Engineering Journal, 2017, 324:63-73. LIANG C, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11):5558-5562. YANG Z Y, DAI D J, YAO Y Y, et al. Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst[J]. Chemical Engineering Journal, 2017, 322:546-555.
点击查看大图
计量
- 文章访问数: 251
- HTML全文浏览量: 76
- PDF下载量: 9
- 被引次数: 0