CHARACTERISTICS OF Pt DOPED TiO2 AND TNTs PHOTOCATALYST AND COMPARISON OF THEIR PHOTOCATALYTIC PROPERTIES
-
摘要: 采用光沉积法掺杂Pt分别制备光催化剂Pt/TNTs和Pt/TiO2,采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和紫外可见分光光度计(UV-Vis)对光催化剂进行表征,考察甲醇溶液浓度和Pt掺杂量对光催化产氢效率的影响,并在紫外光(320~400 nm)和可见光(400~700 nm)下比较TiO2、TNTs、Pt/TiO2和Pt/TNTs 4种催化剂催化甲醇溶液的产氢效率。结果显示:掺杂Pt可将光催化剂吸收波长红移至可见光区域,由于TNTs具有更大的比表面积,可负载更多的Pt,使电子有效转移至金属上,降低电子电洞对再结合的概率,并增加光催化效果;Pt/TNTs在紫外光和可见光的照射下,光催化效率均高于Pt/TiO2,在最佳Pt负载量为1%(以质量分数计),甲醇溶液质量分数为20%的条件下,Pt/TNTs在紫外光和可见光下产氢率分别为2331,137.7 μmol/h。对比可知,本研究的可见光催化产氢系统具有很大的发展潜力。Abstract: The photocatalysts Pt/TNTs and Pt/TiO2 were prepared by doping Pt by photodeposition method. Characterization of the catalysts was conducted by SEM, TEM, XRD and UV-Vis spectrophotometer. The effect of methanol concentration and Pt doping content on hydrogen production was investigated. And the hydrogen production efficiency of TiO2, TNTs, Pt/TiO2 and Pt/TNTs under UV-light (320~400 nm) and visible light (400~700 nm) was compared. The results showed that Pt doping shifted the photocatalysts absorbance into the visible light region. Because of the higher specific surface area of TNTs than TiO2, more Pt could be loaded, which effectively transfered electronholes to the genus, reduced the probability of recombination of electrons and electrons holes, and increased the photocatalytic effect. Pt/TNTs showed higher hydrogen production efficiency under both UV-light and visible light. Under Pt doping proportion of 1%(by mass), the hydrogen production rate of Pt/TNTs could achieve 2331 μmol/h under UV light and 137.7 μmol/h under visible light with 20% methanol solution(by volume). Compared with other literatures, the visible-light photocatalytic hydrogen production system in this study had resonable development potential.
-
Key words:
- photocatalysis /
- TNTs /
- Pt doping /
- hydrogen /
- methanol
-
兰隽如,周晓琴,李子富,等. 硅胶负载TiO2催化剂的制备与光催化效果[J]. 环境工程,2017,35(2):43-48. 李仁贵. 太阳能分解水制氢最近进展:光催化、光电催化及光伏-光电耦合途径[J]. 催化学报,2017,38(1):5-12. NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2007, 11(3):401-425. 张文博,邓德明. g-C3N4/TiO2复合光催化剂的制备及酸化改性[J]. 环境工程,2018,36(4):66-71. 谭璞,宋亚忠,吴剑铭,等. 二维共轭碳材料/TiO2复合光催化剂制备及表征[J]. 工业催化,2019,27(2):49-53. 张学敏,周北海,袁蓉芳,等. 金属掺杂对纳米管TiO2光催化去除水中罗丹明B的影响[J]. 环境工程,2015,33(增刊1):958-963. MELO M D, SILVA L A. Visible light-induced hydrogen production from glycerol aqueous solution on hybrid Pt-CdS-TiO2 photocatalysts[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2011, 226(1):36-41. 姜建辉,邓臣强,曹钰,等. Y和Si共掺杂纳米TiO2的制备及光催化性能[J]. 硅酸盐学报,2019,47(7):942-950. ZHANG D F. Visible light-induced photocatalysis through surface plasmon excitation of platinum-metallized titania for photocatalytic bleaching of rhodamine B[J]. Monatshefte Fur Chemie, 2012, 143(5):729-738. 赵醒,胡彦杰,蒋洁超,等. 过渡金属原位掺杂Pt/TiO2的喷雾燃烧制备及其CO氧化性能[J]. 华东理工大学学报(自然科学版),2018,44(6):823-830. SHOKRI M, HOSSEINI M G, KHOSRAVI M, et al. The preparation of Pt-modified TiO2 nanoparticles via microemulsions, and their application in photocatalytic removal of an azo dye[J]. Fresenius Environmental Bulletin, 2011, 20(4A):1063-1068. OU H H, LO S L. Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene[J]. Journal of Molecular Catalysis a-Chemical, 2007, 275(1/2):200-205. OBREGóN S, COLóN G. Improved H2 production of Pt-TiO2/g-C3N4-MnOx composites by an efficient handling of photogenerated charge pairs[J]. Applied Catalysis B:Environmental, 2014,144, 775-782. CHOWDHURY P, MALEKSHOAR G, RAY M B, et al. Sacrificial hydrogen generation from formaldehyde with Pt/TiO2 photocatalyst in solar radiation[J]. Industrial & Engineering Chemistry Research, 2013, 52(14):5023-5029. 徐敬博,吴音,张思源,等. 稀土元素掺杂对TiO2薄膜结构和光催化性能的影响[J]. 陶瓷学报,2019,40(1):14-17. 卢月洁,张美,毕先均. 微波水热法制备稀土元素铒掺杂TiO2光催化剂及光催化活性[J]. 工业催化,2017,25(2):27-32. GALINSKA A, WALENDZIEWSKI J. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents[J]. Energy & Fuels, 2005, 19(3):1143-1147. LIN Y M,REI M H. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer[J]. International Journal of Hydrogen Energy, 25(3):211-219. LI C L, YUAN J, HAN B Y, et al. TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation[J]. International Journal of Hydrogen Energy, 2010,35(13):7073-7079. MAEDA K, HIGASHI M, LU D L, et al. Efficient nonsacrificial water splitting through two-Step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of the American Chemical Society, 2010,132(16):5858-5868. LV X J, FU W F, CHANG H X, et al. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals[J]. Journal of Materials Chemistry, 2012, 22(4):1539-1546. YEH H M, LO S L, CHEN M J, et al. Hydrogen production from formic acid solution by modified TiO2 and titanate nanotubes in a twostep system under visible light irradiation[J]. Water Sci Technology, 2014, 69(8):1676-1681.
点击查看大图
计量
- 文章访问数: 200
- HTML全文浏览量: 28
- PDF下载量: 5
- 被引次数: 0