PHYSIOLOGICAL RESPONSE OF CHLORELLA PYRENOIDOSA BIOFILM TO CADMIUM STRESS AND ITS REMOVAL EFFECT
-
摘要: 为研究镉胁迫下蛋白核小球藻生物膜的生理响应及其去除效果,实验设计了不同的镉初始浓度梯度,分析镉胁迫下蛋白核小球藻生物膜的叶绿素a、硝酸还原酶、胞外多聚糖(EPS)等生理特征指标,并比较了蛋白核小球藻生物膜在不同的镉初始浓度下对镉的去除效果。结果表明:镉会抑制蛋白核小球藻生物膜的生长及其硝酸还原酶的产生,并且抑制程度随着镉初始浓度的增大而增加,20 mg/L的镉还会导致部分藻类生物膜的死亡;另外,镉会抑制蛋白核小球藻生物膜EPS的产生,但随着接触时间的增加,镉会刺激藻类生物膜分泌少量EPS来阻止镉离子进入藻细胞;镉初始浓度为15 mg/L时,蛋白核小球藻生物膜对镉的去除效果最好,达到89.83%。以上成果可为藻类生物膜去除重金属镉的后续研究奠定基础。Abstract: In order to study the physiological response of Chlorella pyrenoidosa biofilm and removal efficiency on cadmium(Cd), the physiological activity indexes, such as chlorophyll a, nitrate reductase and extracellular polysaccharide (EPS), were analyzed in different initial concentrations of wastewater containing Cd. Additionally, the removal efficiencies of Cd by Chlorella pyrenoidosa biofilm in different concentrations of Cd were compared. Result showed that:the growth of Chlorella pyrenoidosa biofilm and its amount of nitrate reductase were inhibited by Cd, and the degree of inhibition became stronger in higher concentration of Cd; when the concentration of Cd reached 20 mg/L, it would lead to the death of some algae biofilms; Cd would inhibite the production of EPS in Chlorella pyrenoidosa biofilm, but with the increase of contact time, Cd stimulated the biofilm to secrete a small amount of EPS to prevent metal ions from entering algal cells. The Chlorella pyrenoidosa biofilm had a good effect on removal of Cd. When the concentration of Cd was 15 mg/L, Chlorella pyrenoidosa biofilm had the highest removal efficiency on Cd, which could reach 89.83%.
-
Key words:
- Chlorella pyrenoidosa biofilm /
- cadmium /
- physiological response /
- removal effect
-
FLOUTY R, ESTEPHANE G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems:a comparative study[J]. Journal of Environmental Management, 2012,111:106-114. 王碧荷, 王蕾, 贾元铭, 等. 微藻生物富集重金属的研究进展[J]. 环境工程, 2017,35(8):67-71. ANASTOPOULOS I, KYZAS G Z. Progress in batch biosorption of heavy metals onto algae[J]. Journal of Molecular Liquids, 2015,209:77-86. GUPTA V K, RASTOGI A. Biosorption of lead from aqueous solutions by green algae Spirogyra species:kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2008,152(1):407-414. FU F L, WANG Q. Removal of heavy metal ions from wastewaters:a review[J]. Journal of Environmental Management, 2011,92(3):407-418. TRAVIESO L, PELLON A, BENITEZ F, et al. BIOALGA reactor:preliminary studies for heavy metals removal[J]. Biochemical Engineering Journal, 2002,12(2):87-91. ORANDI S, LEWIS D M, MOHEIMANI N R. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor[J]. Journal of Industrial Microbiology & Biotechnology, 2012,39(9):1321-1331. LI T Y, LIN G, PODOLA B, et al. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR[J]. Journal of Hazardous Materials, 2015,297:112-118. LIU C X, HU Z Q, ZUO J L, et al. Removal of Zn(Ⅱ) from simulated wastewater using an algal biofilm[J]. Water Science and Technology, 2014,70(8):1383-1390. 晋利, 丁洁然, 杨知勋, 等. Zn2+对铜绿微囊藻生长及光合作用的影响[J]. 环境工程, 2018,36(7):77-80. 万修志. 提取测定淡水藻中叶绿素a的方法研究[D]. 济南:山东建筑大学, 2011. 张道勇,赵勇胜,潘响亮.胞外聚合物(EPS)在藻菌生物膜去除污水中Cd的作用[J].环境科学研究,2004,17(5):52-55. 朱宇轩. 蛋白核小球藻膜去除Cd(Ⅱ)的实验研究[D]. 南宁:广西大学, 2018. SADEGHIAN A, CHAPRA S C, HUDSON J, et al. Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios[J]. Environmental Modelling & Software, 2018,101:73-85. 张海涛, 郭西亚, 张杰, 等. 铜绿微囊藻对锌、镉胁迫的生理响应[J]. 江苏农业学报, 2019,35(1):33-41. 刘璐, 闫浩, 夏文彤, 等. 镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014,34(2):478-484. GULATI A, JAIWAL P K. Effect of NaCl on nitrate reductase, glutamate dehydrogenase and glutamate synthase in Vigna radiata calli[J]. Biologia Plantarum, 1996,38(2):177-183. 巩东辉, 王志忠, 季祥. 重金属铅胁迫下镧对螺旋藻生长及生理特性的影响[J]. 中国稀土学报, 2015(4):487-493. GARCIA-MEZA J V, BARRANGUE C, ADMIRAAL W. Biofilm formation by algae as a mechanism for surviving on mine tailings[J]. Environmental Toxicology and Chemistry, 2005,24(3):573-581. 陈长平, 徐华林, 梁君荣, 等. 镉离子对红树林底栖硅藻新月筒柱藻胞外多糖的影响[J]. 厦门大学学报(自然科学版), 2013,52(1):122-126. KIPIGROCH K. The use of algae in the process of heavy metal ions removal from wastewater[J]. Desalination and Water Treatment, 2018,134:289-295. FLOUTY R. Removal of Pb(Ⅱ) and Cu(Ⅱ) from aqueous solutions by Chlamydomonas reinhardtii:infrared and thermal analysis[J]. Environmental Engineering and Management Journal, 2015,14(4):871-877. HOH D, WATSON S, KAN E. Algal biofilm reactors for integrated wastewater treatment and biofuel production:a review[J]. Chemical Engineering Journal, 2016,287:466-473. SCHNURR P J, ESPIE G S, ALLEN D G. The effect of light direction and suspended cell concentrations on algal biofilm growth rates[J]. Applied Microbiology and Biotechnology, 2014,98(20):8553-8562.
点击查看大图
计量
- 文章访问数: 105
- HTML全文浏览量: 13
- PDF下载量: 2
- 被引次数: 0