CHARACTERISTICS AND POTENTIAL SOURCES OF PM2.5 POLLUTION IN BEIJING-TIANJIN-HEBEI REGION IN 2017
-
摘要: 京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合ArcGIS软件空间插值法、SPSS 21.0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1)2017年京津冀地区ρ(PM2.5)年均为64.4μg/m3,比2016年下降11.5%,全年达标天数占比为74.2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92.4%;其中,1月平均ρ(PM2.5)最高。4)从空间范围看,整体上京津冀地区呈现南高北低,南北差异相对明显,其中其北部承德、张家口、秦皇岛地区ρ(PM2.5)最低,石家庄、邯郸PM2.5污染较严重。5)源解析结果表明,冬季北京地区主要受本地污染源影响,在春、秋季节受周边区域源贡献因子PSCF值>0.4,河北、山东、河南等地对北京PM2.5的污染有一定的源贡献。Abstract: The problem of air pollution in Beijing-Tianjin-Hebei region (B-T-H region) and its surrounding area is prominent, and heavy pollution weather occurs frequently in autumn and winter, which is the main battlefield of air pollution prevention and control in China. In order to understand the source of PM2.5 pollution in this area and analyze the relationship between PM2.5 pollution and meteorological factors, this paper engaged the air quality monitoring stations in Beijing, Tianjin and Hebei region in 2017 to achieve meteorological data such as air pressure, wind speed, relative humidity, temperature and precipitation. In combination with the spatial interpolation method of ArcGIS software and Pearson correlation analysis of SPSS 21.0, the cluster analysis of backward trajectory of Lagrangian mixed diffusion model HYSPLIT was adopted. The main air mass transmission tracks in Beijing were discussed, and the potential source contribution factors were calculated with GDAS meteorological data. The results showed:1) In 2017, the average annual mass concentration of PM2.5 in the B-T-H region was 64.4 μg/m3, which was 11.5% lower than that in 2016, and the proportion of days meeting the air quality standard for the whole year was 74.2%. 2) There was a positive correlation between the mass concentration of PM2.5 and air pressure and relative humidity, of which the correlation between air pressure index and PM2.5 was the highest. There was a negative correlation between mass concentration of PM2.5 and wind speed, sunshine duration, temperature and precipitation, and the correlation between sunshine duration and PM2.5 was the highest. From the relationship between PM2.5 and meteorological factors in different seasons, winter was the most significant. 3) In terms of time scale, most serious pollution took place in winter and released in autumn and spring. And PM2.5 in summer, excellent/good grade accounted for 92.4% above. Average PM2.5 concentration was the highest in January. 4) In the spatial range, the whole B-T-H region showed a higher level in the south and lower in the north, with the lowest concentration of PM2.5 in Chengde, Zhangjiakou and Qinhuangdao in the north, and the serious pollution in Shijiazhuang and Handan. 5) The results of source analysis showed that Beijing was mainly affected by local pollution sources in winter. In the spring and winter, the PSCF value of the source contribution factor in the surrounding region was greater than 0.4, and there was a certain source contribution of PM2.5 pollution to Beijing in Hebei, Shandong and Henan.
-
ZHANG Y, SHUAI C Y, BIAN J,et al. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities:decomposition analysis using LMDI[J]. Journal of Cleaner Production,2019,24(9):218-223. TIE X X,WU D,BRASSEUR G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China[J]. Atmospheric Environment,2009,43(14):2375-2377. Pope Ⅲ C A. Review:epidemiological basis for particulate air pollution health standards[J]. Aerosol Science and Technology,2000,32(1):4-14. LI R J, KOU X J, GENG H, et al. Mitochondrial damage:an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats[J]. Journal of Hazardous Materials,2015,287:392-401. ZEINA D,GUILLAUME G,SYLVAIN B, et al. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture[J]. Toxicology,2006,225(1):12-24. LIU Q Y,JILL B, ZHANG Y X. Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells[J]. Atmospheric Environment,2016,126:28-35. CARSTEN H,ROGER F,MICHAEL S. Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia[J]. Atmospheric Environment,2008,42(36):8422-8431. LIU Q Y, LIU Y J, YIN J X, et al. Chemical characteristics and source apportionment of PM10 during Asian dust storm and non-dust storm days in Beijing[J]. Atmospheric Environment,2014,91:308-317. LI R J, KOU X J, GENG H, et al.Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan[J].Chinese Chemical Letters,2014,25(5):663-666. HUANG W Q, FAN H B, QIU Y F, et al. Application of fault tree approach for the causation mechanism of urban haze in Beijing:considering the risk events related with exhausts of coal combustion[J].Science of the Total Environment,2016,544:1128-1135. 王琴,张大伟,刘保献,等.基于PMF模型的北京市PM2.5来源的时空分布特征[J].中国环境科学,2015,35(10):2917-2924. 曹军骥.PM2.5与环境[M].北京:科学出版社,2014:50-75. 康娜,辛金元,蔺永耀,等.北京山前典型细粒子污染过程的气象条件分析[J].环境科学研究,2009,22(9):1013-1020. 江琪,王飞,张恒德,等.北京市PM2.5和反应性气体浓度的变化特征及其与气象条件的关系[J].中国环境科学,2017,37(3):829-837. 刘庆阳,刘艳菊,杨峥,等.北京城郊冬季一次大气重污染过程颗粒物的污染特征[J].环境科学学报,2014,34(1):12-18. 苗蕾,廖晓农,王迎春.基于长时间序列的北京PM2.5浓度日变化及气象条件影响分析[J].环境科学,2016,37(8):2836-2846. 李珊珊,程念亮,徐峻,等.2014年京津冀地区PM2.5浓度时空分布及来源模拟[J].中国环境科学,2015,35(10):2908-2916. 赵秀娟,姜华,王丽涛,等.应用CMAQ模型解析河北南部城市的霾污染来源[J].环境科学学报,2012,32(10):2559-2567. 高愈霄,霍晓芹,闫慧,等.京津冀区域大气重污染过程特征初步分析[J].中国环境监测,2016,32(6):26-35. 杨妍妍,李金香,梁云平,等.应用受体模型CMB对北京市大气PM2.5来源的解析研究[J].环境科学学报,2015,35(9):2693-2700. 马召辉,梁云平,张健,等.北京市典型排放源PM2.5成分谱研究[J].环境科学学报,2015,35(12):4043-4052. 王跃思,张军科,王莉莉,等.京津冀区域大气霾污染研究意义、现状及展望[J].地球科学进展,2014,29(3):388-396. 李明.京津冀城市群经济联系研究[D].石家庄:河北师范大学,2016:1-7. 李莉,蔡鋆琳,周敏.2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J].环境科学,2015,36(7):2327-2336. WANG Y Q, ZHANG X Y,ROLAND R. D. TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modelling and Software,2009,24(8):938-939. 徐丽华. 大气程辐射遥感影像与大气环境质量研究[D].上海:华东师范大学,2005.
点击查看大图
计量
- 文章访问数: 135
- HTML全文浏览量: 14
- PDF下载量: 18
- 被引次数: 0