ANALYSIS ON TEMPO-SPATIAL VARIATION AND PREDICTION OF AIR POLLUTANTS IN JINAN
-
摘要: 大气污染影响生产生活和人体健康,了解大气污染物时空分布特征及污染源是大气污染治理的基础和前提。基于济南市2014-2018年空气质量实时监测数据,主要污染物浓度数据和气象要素数据,运用相关分析法和BP神经网络预测模型,分析了济南市大气污染物时空分布特征及污染物来源,并对济南市6种主要污染物进行预测。结果表明:在时间维度上,空气质量呈逐年好转趋势,季节上则表现出冬季污染最严重,夏季最轻,采暖期污染物浓度远远高于非采暖期的特点;从日变化看,上下班高峰段是污染最严重时段。在空间维度上,城市外围污染较为严重,市区污染相对较轻。在污染物成分上,PM10逐渐成为颗粒物污染的主体。通过济南市污染物浓度预测结果,分析未来3年内污染物浓度变化情况,进一步提出合理优化的污染治理方案来改善济南市大气污染状况。Abstract: Air pollution seriously affects people's production, life and health. Analysis on tempo-spatial distribution of air pollutants and their sources is the basis and prerequisite for air pollution control. Based on the real-time air quality monitoring data, the main pollutant concentration data and meteorological elements data of Jinan from 2014 to 2018, this paper analyzed the spatial and temporal distribution characteristics and sources of air pollutants in Jinan by using correlation analysis method and BP neural network prediction model, and forecasted 6 major pollutants in Jinan.The results showed that the air quality revealed an improving trend year by year. The concentration of the majority pollutants in winter was higher than that in summer, and air quality in non-heating period was better than that in heating period. From the perspective of diurnal variation, the peak period of commuting was the most serious pollution period. Spatially, the pollution of urban periphery was more serious than that of urban. PM10 was becoming the most serious pollutant, and the pollution caused by vehicle exhaust emission was increasing significantly. Strengthening the control of air pollution in suburbs and rural areas, especially the monitoring and control of large particulate matters, and reducing vehicle exhaust pollution by means of vehicle restriction were the main ways to further improve the air quality of Jinan.By prediction result of pollutants concentration, and its analysis for the next three years, we further put forward the pollution control optimization scheme to improve atmospheric pollution in Jinan.
-
Key words:
- air quality /
- pollutant /
- spatio-temporal distribution /
- Jinan /
- forecast
-
王桂芝,武灵艳,陈纪波,等.北京市PM2.5污染健康经济效应的CGE分析[J].中国环境科学,2017,37(7):2779-2785. NURUL A B M, OLIVER L H L, DASIMAH O.Human health and wellbeing:human health effect of air pollution[J].Procedia-Social and Behavioral Sciences,2014,153:221-229. 谢元博,陈娟,李巍.雾霾重污染期间北京居民对高浓度PM2.5持续暴露的健康风险及其损害价值评估[J].环境科学,2014,35(1):1-8. 王振波,梁龙武,林雄斌,等.京津冀城市群空气污染的模式总结与治理效果评估[J].环境科学,2017,38(10):4005-4014. 许万智,朱春涛,陈仲榆,等.华北地区一次重污染天气的气象变化过程分析[J].中国环境监测,2015,31(6):34-40. 尹晓梅,孙兆彬,郭淳薇,等.2016年12月京津冀一次重污染天气过程分析[J].生态环境学报,2017, 26(12):2071-2083. 丁铭,邹强,郁建桥.2013年苏州春季一次重污染天气的过程分析[J].中国环境监测, 2015,31(4):44-47. ZHU W H,XU X D,ZHENG J,et al.The characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji region and its relationships with meteorological factors[J].Science of The Total Environment, 2018,626:887-898. LI X L,MA Y J,WANG Y F,et al.Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China[J]. Atmospheric Research,2017,198:185-193. DUO B,CUI L L,WANG Z Z,et al.Observations of atmospheric pollutants at Lhasa during 2014-2015:pollution status and the influence of meteorological factors[J].Journal of Environmental Sciences,2018,63:28-42. 邱坚,霍玉玲,万学平,等.镇江市四季PM2.5污染特征与潜在源区分析[J].环境工程,2019,37(6):123-130. LI R,CUI L L,LI J L,et al.Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014-2016[J].Atmospheric Environment,2017,161:235-246. 苏含笑,葛碧洲,陈兴都.典型城市市区春冬季PM2.5污染特征及来源分析[J].环境工程,2018,36(9):99-103. MIKALAI F, YAN H W, LI X J.Temporal and spatial variation of particulate matter and its correlation with other criteria of air pollutants in Lanzhou, China, in spring-summer periods[J].Atmospheric Pollution Research,2018,9(6):1100-1110. 马敏劲,杨秀梅,丁凡,等.中国南北方大气污染物的时空分布特征[J].环境科学与技术,2018,41(5):187-197. 崔嵩,李昆阳,付强,等.哈大齐城市大气污染物浓度变化特征与集中度分析[J].黑龙江大学工程学报,2017,8(2):36-41. 何建军,吴琳,毛洪钧,等.气象条件对河北廊坊城市空气质量的影响[J].环境科学研究,2016,29(6):791-799. 肖悦,田永中,许文轩,等.近10年中国空气质量时空分布特征[J].生态环境学报,2017,26(2):243-252. 赵晨曦,王云琦,王玉杰,等.北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J].环境科学,2014,35(2):418-427. 济南市统计局,国家统计局济南调查队.2017年济南市国民经济和社会发展统计公报([1])[N]. 济南日报,2018-04-13(A04). CHEN D S, LIU X X, LANG J L, et al.Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain[J].Science of The Total Environment, 2017,583:280-291. SUN Y W, ZHOU X H, WANG W X,et al.Aerosol size distributions during haze episodes in winter in Jinan, China[J]. Particuology, 2016,28:77-85. MANIRABONA A,FOURATIL C.A Kriged fingerprinting for wireless body area network indoor localization[J].Wireless Presonal Communications,2015,80(4):1501-1515. 蒋蕊竹,李秀启,朱永安,等.基于MODIS黄河三角洲湿地NPP与NDVI相关性的时空变化特征[J].生态学报,2011,31(22):6708-6716. 吴玉莲,王襄平,李巧燕,等.长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析[J].北京大学学报(自然科学版),2014,50(3):577-586. 任志远,刘焱序.西北地区植被净初级生产力估算模型对比与其生态价值评价[J].中国生态农业学报,2013,21(4):494-502. 刘焱序,吴文恒,温晓金,等.晋陕蒙能源区城镇化过程及其对生态环境的影响[J].地理研究,2013,32(11):2009-2020. YAO Y R, HE C, LI S Y,et al.Properties of particulate matter and gaseous pollutants in Shandong, China:daily fluctuation, influencing factors, and spatiotemporal distribution[J].Science of The Total Environment, 2019,660:384-394. 张文娟,孙晓艳,李敏,等.济南市空气质量特征及重污染期间PM2.5成分谱分析[J].中国人口·资源与环境,2018,28(增刊1):71-75. SUN S D, JIANG W, GAO W D. Vehicle emission trends and spatial distribution in Shandong province, China, from 2000 to 2014[J].Atmospheric Environment, 2016,47:190-199. CHEN L, ZHAO H,WANG W X,et al. Effect of windblown dust from local and regional sources on the air quality of the central district in Jinan, China[J]. Atmospheric Research,2017,185:44-52. 郝慧梅,任志远,薛亮.基于3S的榆林市植被净初级生产力价值估算及其时空差异分析[J].地理与地理信息科学,2008(5):75-79. LIU Y S, LI X R, TANG G Q. Secondary organic aerosols in Jinan, an urban site in North China:significant anthropogenic contributions to heavy pollution[J].Journal of Environmental Sciences, 2019,80(16):107-115. 王占山,张大伟,陈添,等.2013年北京市NO2的时空分布[J].环境科学学报,2015,35(5):1529-1536.
点击查看大图
计量
- 文章访问数: 263
- HTML全文浏览量: 52
- PDF下载量: 14
- 被引次数: 0