中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通风量对有机废弃物生物干化的影响

向虹霖 蒋建国 高语晨 孟园 徐一雯 艾克来木·艾合买提 鞠彤瑶 韩思宇 郭晏然

向虹霖, 蒋建国, 高语晨, 孟园, 徐一雯, 艾克来木·艾合买提, 鞠彤瑶, 韩思宇, 郭晏然. 通风量对有机废弃物生物干化的影响[J]. 环境工程, 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017
引用本文: 向虹霖, 蒋建国, 高语晨, 孟园, 徐一雯, 艾克来木·艾合买提, 鞠彤瑶, 韩思宇, 郭晏然. 通风量对有机废弃物生物干化的影响[J]. 环境工程, 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017
XIANG Hong-lin, JIANG Jian-guo, GAO Yu-chen, MENG Yuan, XU Yi-wen, AIKELAIMU Aihemaiti, JU Tong-yao, HAN Si-yu, GUO Yan-ran. EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017
Citation: XIANG Hong-lin, JIANG Jian-guo, GAO Yu-chen, MENG Yuan, XU Yi-wen, AIKELAIMU Aihemaiti, JU Tong-yao, HAN Si-yu, GUO Yan-ran. EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017

通风量对有机废弃物生物干化的影响

doi: 10.13205/j.hjgc.202002017
基金项目: 

国家重大科技专项-污泥与废弃物处置及资源化利用技术集成与综合示范(2017ZX07202005)。

详细信息
    作者简介:

    向虹霖(1994-),女,硕士研究生,主要研究方向为有机废弃物生物干化及其资源化利用。xianghl18@mails.tsinghua.edu.cn

    通讯作者:

    蒋建国(1970-),男,博士,教授。jianguoj@tsinghua.edu.cn

EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE

  • 摘要: 通过有机废弃物生物干化实验,研究了通风量对生物干化效果的影响。实验以果蔬、厨余和园林垃圾几种典型有机废弃物作为原料,设置3个梯度的通风量,对其温度、含水率和有机质含量变化对比发现:通风量会显著影响生化干化指数、空气利用率以及干化后物料的低位热值。低通风量下温度升高明显,且空气利用率较高,但携带水汽能力较弱,难以有效带走物料水分;高通风量下难以维持高温,热量损失较大,但物料最终含水率最低。当通风量为48 L/(kg·h)时,果蔬与园林协同干化的最终含水率能降低到13.97%,生物干化指数为2.34,物料的低位热值最终达到13932 kJ/kg,较初始热值提升了322%,能够基本满足制备垃圾衍生燃料(RDF)的条件,且能够在相对更低的能耗下提高生物干化效果。
  • 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[G]. 2017.
    张军文, 沈建. 城市果蔬垃圾处理现状及再利用对策[J]. 安徽农业科学, 2017, 45(36):41-43.
    MOHAMMED M, OZBAY I, DURMUSOGLU E. Bio-drying of green waste with high moisture content[J]. Process Safety and Environmental Protection, 2017, 111:420-427.
    HE P J, ZHAO L, ZHENG W, et al. Energy balance of a biodrying process for organic wastes of high moisture content:a review[J]. Drying Technology, 2013, 31(2):132-145.
    YUAN J, ZHANG D F, LI Y, et al. Effects of adding bulking agents on biostabilization and drying of municipal solid waste[J]. Waste Management, 2017, 62:52-60.
    ZHOU H B, CHEN T B, GAO D, et al. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting[J]. Bioresource Technology, 2014, 171:452-460.
    赵进. 城市生活垃圾生物干化工艺优化设计研究[D]. 武汉:武汉理工大学, 2015.
    余旺, 黄绍松, 孙水裕, 等. 接种菌剂和外加能源对污泥生物干化效果的影响[J]. 环境污染与防治, 2012, 34(8):39-43.
    MOHAMMED M, DONKOR A, OZBAY I. Bio-drying of biodegradable waste for use as solid fuel:a sustainable approach for green waste management[J]. Agricultural Waste and Residues, 2018.
    ZHANG D F, LUO W H, YUAN J, et al. Co-biodrying of sewage sludge and organic fraction of municipal solid waste:role of mixing proportions[J]. Waste Management, 2018, 77:333-340.
    LIU H T, WANG Y W, LIU X J, et al. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China[J]. Journal of the Air & Waste Management Association, 2017, 67(2):212-218.
    TOM A P, PAWELS R, HARIDAS A. Biodrying process:a sustainable technology for treatment of municipal solid waste with high moisture content[J]. Waste Management, 2016, 49:64-72.
    TAMBONE F, SCAGLIA B, SCOTTI S, et al. Effects of biodrying process on municipal solid waste properties[J]. Bioresource Technology, 2011, 102(16):7443-7450.
    YUAN J, ZHANG D F, LI Y, et al. Effects of the aeration pattern, aeration rate, and turning frequency on municipal solid waste biodrying performance[J]. Journal of Environmental Management, 2018, 218:416-424.
    SONG X, MA J, GAO J D, et al. Optimization of bio-drying of kitchen waste:inoculation, initial moisture content and bulking agents[J]. Journal of Material Cycles and Waste Management, 2017, 19(1):496-504.
    YANG B Q, HAO Z D, JAHNG D. Advances in biodrying technologies for converting organic wastes into solid fuel[J]. Drying Technology, 2017, 35(16):1950-1969.
    VELIS C A, LONGHURST P J, DREW G H, et al. Biodrying for mechanical-biological treatment of wastes:A review of process science and engineering[J]. Bioresource Technology, 2009, 100(11):2747-2761.
    李春萍, 蔡先明, 秦侠, 等. 通风、翻堆和添加剂对垃圾生物干化和臭气排放的影响[J]. 环境工程, 2014, 32(3):83-86.
    YU D W, YANG M, QI L, et al. Effects of aeration on matrix temperature by infrared thermal imager and computational fluid dynamics during sludge bio-drying[J]. Water Research, 2017, 122:317-328.
    COLOMER-MENDOZA E J, HERRERA-PRATS L, ROBES-MARTINEZ F, et al. Effect of airflow on biodrying of gardening wastes in reactors[J]. Journal of Environmental Sciences, 2013, 25(5):865-872.
    FREI K M, CAMERON D, STUART P R. Novel drying process using forced aeration through a porous biomass matrix[J]. Drying Technology, 2004, 22(5):1191-1215.
    WU Z Y, CAI LU, KRAFFT THOMAS, et al. Biodrying performance and bacterial community structure under variable and constant aeration regimes during sewage sludge biodrying[J]. Drying Technology, 2017, 36(1):84-92.
    ZHAO L, GU W M, SHAO L M, et al. Sludge bio-drying process at low ambient temperature:effect of bulking agent particle size and controlled temperature[J]. Drying Technology, 2012, 30(10):1037-1044.
    MA J, ZHANG L, MU L, et al. Thermally assisted bio-drying of food waste:synergistic enhancement and energetic evaluation[J]. Waste Management, 2018, 80:327-338.
    ZHANG D Q, HE P J, JIN T F, et al. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation[J]. Bioresource Technology, 2008, 99(18):8796-8802.
    MA J, ZHANG L, LI A M. Energy-efficient co-biodrying of dewatered sludge and food waste:synergistic enhancement and variables investigation[J]. Waste Management, 2016, 56:411-422.
    HUILINIR C, VILLEGAS M. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge[J]. Water Research, 2015, 82:118-128.
    VILLEGAS M, HUILINIR C. Biodrying of sewage sludge:kinetics of volatile solids degradation under different initial moisture contents and air-flow rates[J]. Bioresource Technology, 2014, 174:33-41.
    SEN R, ANNACHHATRE A P. Effect of air flow rate and residence time on biodrying of cassava peel waste[J]. Internation Journal of Environmental Technology & Management, 2015, 18(1):9-29.
    YANG B Q, ZHANG L, JAHNG D. Importance of initial moisture content and bulking agent for biodrying sewage sludge[J]. Drying Technology, 2014, 32(2):135-144.
    ADANI F, BAIDO D, CALCATERRA E, et al. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste[J]. Bioresource Technology, 2002, 83(3):173-179.
    赵卫兵, 汪家权, 胡淑恒, 等. 城市垃圾生物干化最佳工艺参数的优化研究[J]. 环境工程, 2015, 33(8):97-100.
    SUGNI M, CALCATERRA E, ADANI F. Biostabilization-biodrying of municipal solid waste by inverting air-flow[J]. Bioresource Technology, 2005, 96(12):1331-1337.
    ZHAO S Q, HUANG W X, YIN R, et al. The effect of bio-drying pretreatment on heating values of municipal solid waste[J]. Advanced Materials Research, 2014, 1010-1012:537-546.
    SHAO L M, HE X, YANG N, et al. Biodrying of municipal solid waste under different ventilation modes:drying efficiency and aqueous pollution[J]. Waste Management & Research, 2012, 30(12):1272-1280.
    何品晶, 邵立明. 固体废物管理[M]. 北京:高等教育出版社, 2004.
    SLEZAK R, KRZYSTEK L, LEDAKOWICZ S. Biological drying of municipal solid waste from landfill[J]. Drying Technology, 2019, 15:189-199.
    李玉龙, 蔡文倍, 李登新. 碳氮比对垃圾干化及能源化利用的影响[J]. 环境工程学报, 2017, 11(6):3773-3779.
    袁京, 张地方, 李赟, 等. 外加碳源对厨余垃圾生物干化效果的影响[J]. 中国环境科学, 2017, 37(2):628-635.
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15

目录

    /

    返回文章
    返回