APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING
-
摘要: 为了解决地面PM2.5监测网络在空间和时间覆盖受限的问题,提出了基于宽时空覆盖的卫星气溶胶光学厚度AOD,利用Stacking方法建立地面PM2.5浓度估算模型,将AOD、PM2.5和各气象参数以及与PM2.5排放有关的数据进行训练,使用改进网格搜索对模型超参数进行优化,通过对多重共线性分析,建立基于Stacking的最优PM2.5浓度估算模型。选取2016-01-01-2016-12-31的数据作为实验对象,结果表明:相比于随机森林、GBRT和XGBoost 3种模型,使用岭回归作为元学习器的Stacking模型性能更优,可见Stacking适用于大范围地理区域的大气污染监测。Abstract: In order to solve the problem that the ground PM2.5 measurement was limited in spatial and temporal coverage, satellite aerosol optical depth AOD with wide spatial-temporal coverage and stacking method were proposed to establish a PM2.5 concentration estimation model. The AOD and meteorological parameter and PM2.5 emissions related data were trained for building the model, and the improved grid search algorithm was used to optimize the hyperparameters of each model. Based on multi-collinearity analysis, the optimal PM2.5 concentration estimation model based on Stacking was established. The data between January 1st, 2016 to December 31st, 2016, was selected as the experimental object. The experimental results showed that the performance of the stacking model using ridge regression as the meta-learner was better than that of the random forest, GBRT and XGBoost model. It was concluded that the stacking model was applicable for air pollution monitoring in a large geographical area.
-
Key words:
- PM2.5 /
- air pollution /
- aerosol optical depth(AOD) /
- ensemble learning /
- Stacking
-
亢红霞,那晓东,臧淑英. 基于卫星遥感数据(AOD)估算PM2.5的研究进展[J]. 环境科学与管理, 2016, 41(2):30-34. KAUFMAN Y J, TANRÉ D, REMER L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research Atmospheres, 1997,102(27):17-51. 毛节泰, 李成才. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J]. 应用气象学报, 2002,13(1):127-135. XI X, WEI Z, RUI X G, et al. A comprehensive evaluation of air pollution prediction improvement by a machine learning method[C]//IEEE International Conference on Service Operations & Logistics. IEEE, 2016. GUPTA P, CHRISTOPHER S A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products:multiple regression approach[J]. Journal of Geophysical Research Atmospheres, 2009,114(20). LIU Y, CAO G F, ZHAO N Z, et al. Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach[J]. Environmental Pollution, 2018,235:272-282. HU X F, WALLER L A, AL-HAMDAN M Z, et al. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression[J]. Environmental Research, 2013, 121(2):1-10. FANG X, ZOU B, LIU X P, et al. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling[J]. Remote Sensing of Environment, 2016, 186:152-163. LI T W, SHEN H F, YUAN Q Q, et al. Estimating ground-level PM2.5 by fusing satellite and station observations:a geo-intelligent deep learning approach[J]. Geophysical Research Letters, 2017, 44(23). 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5):47-54. 张笑铭,王志君,梁利平. 一种适用于卷积神经网络的Stacking算法[J]. 计算机工程, 2018, 44(4):243-247. CHEN J, LU J, AVISE J C, et al. Seasonal modeling of PM2.5 in California's San Joaquin Valley[J]. Atmospheric Environment, 2014, 92:182-190. ZHANG C, NI Z W, NI L P. Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors[J]. Physica A:Statistical Mechanics and its Applications, 2015, 438:114-123. 温博文,董文瀚,解武杰,等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10):154-157. CHEN Z H, CHENG S Y, LI J B, et al. Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China[J]. Atmospheric Environment, 2008, 42(24):6078-6087. 陈楠,操文祥,丁青青,等. 湖北省PM2.5与PM10比值分析及PM2.5时空分布特征研究[J]. 环境科学与管理, 2017, 42(1):98-102. 王婷. 长株潭地区PM2.5时空分布研究[D].湘潭:湖南科技大学,2016. 王振波, 方创琳, 许光, 等. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015, 70(11):1720-1734. 李沈鑫, 邹滨, 刘兴权, 等. 2013-2015年中国PM2.5污染状况时空变化[J]. 环境科学研究, 2017,30(5):678-687. 姜磊, 周海峰, 赖志柱, 等. 中国城市PM2.5时空动态变化特征分析:2015-2017年[J]. 环境科学学报, 2018, 38(10):33-42.
点击查看大图
计量
- 文章访问数: 202
- HTML全文浏览量: 13
- PDF下载量: 7
- 被引次数: 0