ADVANCES IN STATIC VORTEX FLOW ENHANCING MASS TRANSFER FOR WET FLUE GAS DESULFURIZATION
-
摘要: 静态旋流作为湿法烟气脱硫中一种强化传质的方式,对其发展现状与趋势展开研究。分析了旋流吸收器的内部气相速度场以及强化传质的过程原理,综合比较了各类气液接触的脱硫方式、脱硫剂的特征,确定了在运行范围内脱硫剂浓度、气液流速、SO2浓度等操作参数对于脱硫效率η和气相总体积传质系数Kga的影响及其机理,剖析了利用传质理论进行旋流吸收的研究及发展,介绍了旋流脱硫的工业应用。结果表明:静态旋流有助于脱硫传质过程的强化,在工况范围内,吸收液浓度、气液流速的增加,提高了η和Kga,但随着SO2浓度的增加,η及Kga略有下降,分别最高下降7.1%和0.75 s-1,总工况范围内η和Kga分别为68.58%~97.63%和5.08~8.46 s-1。研究结果可对基于旋流强化的工业烟气脱硫提供参考。Abstract: Static vortex was a way for progress intensification in wet flue gas desulfurization, and its status and trend were studied. The gas-phase flow field and the principle of the progress intensification were introduced. Various types of gas-liquid contact were compared, and the characteristics of various absorbents were analysed. The effects of the absorbent concentration, gas and liquid flow rate and SO2 concentration on the desulfurization efficiency (η) and the overall gas phase mass transfer coefficient(Kga) were determined and the mechanisms were explained. The research on cyclone absorber using mass transfer theory and development of mass transfer theory were analyzed, and the industrial applications were introduced. The results showed that static vortex flow was useful to improve desulfurization efficiency and mass transfer rate, and η and Kga increased with the increase of absorbent concentration and gas-liquid flow rate; but with the increase of SO2 concentration, η and Kga decreased slightly(with maximum value of 7.1% and 0.75 s-1, namely), and the range of η and Kga in all operation conditions were 68.58%~97.63% and 5.08~8.46 s-1, respectively. The results of the research could offer references for the industrial use of vortex flow technology for desulfurization.
-
CUI S P, HAO R L, FU D. An integrated system of dielectric barrier discharge combined with wet electrostatic precipitator for simultaneous removal of NO and SO2:key factors assessments, products analysis and mechanism[J]. Fuel, 2018, 221:12-20. SRIVASTAVA R K, JOZEWICZ W. SO2 scrubbing technologies:a review[J]. Environmental Progress, 2001, 20(4):219-228. BURGESS-CONFORTI J R, BRYE K R, MILLER D M, et al. Dry flue gas desulfurization by-product application effects on plant uptake and soil storage changes in a managed grassland[J]. Environmental Science and Pollution Research International, 2018, 25:3386-3396. 王大淇,赵兵涛,张梓均,等.氧化吸收法同步脱除燃烧烟气中SO2,NO<em>x和CO2的化学热力学及其评价[J].上海理工大学学报,2019, 41(2):130-136. FANG D A, LIAO X, ZHANG X F, et al. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash:as a reductant to remove chromium and vanadium from vanadium industrial wastewater[J]. Journal of Hazardous Materials, 2018, 342:436-445. LI B, WANG H L, XU Y Y, et al. Effect of wet flue gas desulfurization facilities of coal-fired power plants on mercury emission[J]. Energy Procedia, 2019, 156:128-132. NEWTON G H, KRAMLICH J, PAYNE R. Modeling the SO2 slurry droplet reaction[J]. AIChE Journal, 1990, 36(12):1865-1872. ZHOU Y, LI C T, FAN C Z, et al. Wet removal of sulfur dioxide and nitrogen oxides from simulated flue gas by Ca(ClO)2 solution[J]. Environmental Progress & Sustainable Energy, 2015, 34(6):1586-1585. QUAN X J, WANG F P, ZHAO Q H, et al. Air stripping of ammonia in a water-sparged aerocyclone reaction[J]. Journal of Hazardous Materials, 2009, 170(2/3):983-988. 赵晓曦,邓先和,潘朝群,等.超重力技术及其在环保中的应用[J]. 化工环保, 2002, 22(3):142-146. LIN C C, CHEN B C. Carbon dioxide absorption in a cross-flow rotating packed bed[J]. Chemical Engineering Research and Design,2011, 89(9):1722-1729. 李正兴. 旋流吸收器强化吸收过程的研究[D].无锡:江南大学,2007. 王剑, 张晓萍, 李恩田, 等. 膜法天然气脱硫的研究进展[J]. 环境工程, 2014, 32(1):135-139. 刘风伟,张连红,刘晓玉. 旋流板塔在烟气脱硫中的研究状况[J].当代化工, 2013, 42(11):1599-1601. 林晓芬, 林卫华.循环流化床烟气脱硫技术简介[J].广东化工, 2017, 44(22):116-117. 方弘, 李洲, 马丹竹, 等. 烟气脱硫活性炭改进方法研究进展[J].冶金能源, 2017, 36(6):56-61. 洪彩霞, 袁惠新.旋流技术在强化多相流反应过程中的应用[J].化工进展, 2008,27(9):1328-1331. SHEPHERD C B, LAPPLE C E. Flow pattern and pressure drop in cyclone dust collectors[J]. Industrial & Engineering Chemistry Research, 1940, 32(9):1246-1248. 曹仲文,袁惠新.旋流器强化热质传递的机理及应用[J].煤矿机械, 2006, 27(10):104-107. LISTEWNIK J. Some factors influencing the performance of de-oiling hydrocyclones for main applications[J]. 2th International Conference on Hydrocyclone, 1984(3):1-5. 张梓均,赵兵涛,王大淇,等.微型多进口旋流器内气流形态的数值模拟[J].化学工程, 2018, 46(8):59-63. 钱鹏. 旋流选择性吸收硫化氢的实验研究[D].上海:华东理工大学,2016. 李颖,钟文琪,居静, 等.NaClO/Ca(OH)2旋转喷雾脱硫脱硝的实验研究[J].工程热物理学报, 2015, 36(3):555-558. 周先桃,王依谋,马良, 等.液相射流吸收耦合气相旋流分离烟气脱硫[J].化工进展, 2016, 35(12):4053-4059. 赵清华,全学军, 程治良, 等.水力喷射-空气旋流器用于湿法烟气脱硫及其传质机理[J].化工学报, 2013, 64(11):3993-4000. BIZZO W A, SADALA R A, HORY R I,et al. Experimental study of SO2 absorption in a cyclone scrubber[J].17th International Congress of Mechanical Engineering, 2003, 10-14. POURMOHAMMADBAGHER A, JAMSHIDI E, ALE-EBRAHIM H, et al. Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber[J]. Chemical Engineering and Processing, 2011, 50(8):773-779. 高翔.工业烟气污染防治可行技术案例汇编[M].北京:中国环境出版社,2016. JORDAN M, MACINNES, AHMED A, et al. CO2 absorption using diethanolamine-water solutions in a rotating spiral contactor[J]. Chemical Engineering Journal, 2017, 307:1084-1091. NAPADA K, AMARAPORN K, ATTASAK J. Carbon dioxide absorption using ammonia solution in a microchannel[J]. International Journal of Greenhouse Gas Control, 2017, 63:431-441. XU Y, JIN B S, ZHAO Y L, et al. Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower:an integrated model combining gas-liquid hydrodynamics and chemistry[J]. Applied Energy, 2018, 211:318-333. BREET T. Corrosion in wet flue gas desulfurization absorbers[J]. Power Engineering-Barrington then Tulsa, 2011, 115(1):20-29. TONG Y L, TIM C K, CHENG L, et al. Carbon dioxide removal by using Mg(OH)2 in a bubble column:effects of various operating parameters[J]. International Journal of Greenhouse Gas Control, 2014, 31:67-76. SIMONE Z, MARC-OLIVER S, BARBARA K, et al. Experiment studies on spray absorption with the post combustion CO2 capture pilot-plant CASPAR[J]. Energy Procedia, 2017, 114:1325-1333. 何书申,赵兵涛,俞致远.基于胺法的旋流喷淋气液吸收烟气CO2的性能[J].上海理工大学学报,2016,38(1):25-30,37. DAVIES J T, DRISCOLL J P. Eddies at free surfaces simulated by pulses of water[J]. Industrial & Engineering Chemistry, 1974, 13(2):105-109. 胡蓉蓉. 气液传质宽谱作用旋涡模型及环己烷氧化废碱液的回收利用[D].湘潭:湘潭大学, 2002. 曹仲文,李正兴,袁惠新.旋流器用于气体吸收的实验研究[J].环境工程学报,2007,1(2):102-104. 赵清华, 全学军, 程治良, 等. 水力喷射-空气旋流中的气液传质特性及其机理[J].化工学报, 2013, 64(10):3652-3657. 孙世祥,范祥子,郭献涛.旋流冲击湿式脱硫除尘器在燃煤锅炉中的应用[J].煤矿环境保护,1998,(4):31-32. 刘定平,陆培宇.旋流雾化技术在464000 m3/h烟气湿法脱硫中的应用[J].中国电力,2015,48(8):130-134,140.
点击查看大图
计量
- 文章访问数: 116
- HTML全文浏览量: 10
- PDF下载量: 9
- 被引次数: 0