RETRIEVAL OF CHLOROPHYLL-A CONCENTRATION IN PINGZHAI RESERVOIR BASED ON SENTINEL-2
-
摘要: 为实现对平寨水库叶绿素a的遥感监测,选取平寨水库2017年11月17—18日的实测叶绿素a浓度数据和准同步的Sentinel-2数据,通过选取最佳波段组合建立BP神经网络模型,对平寨水库叶绿素a进行反演,并分析其空间分布特征。结果表明:Sentinel-2红边波段对叶绿素a的敏感性优于可见光波段,在叶绿素a浓度反演方面具有较大潜力。相关系数最大的波段组合方式是:B5/B4、[1/B4-1/B5]*B6、[1/B4-1/B5]*B7和[1/B4-1/B5]*B8;BP神经网络模型可决系数R2为0.9160,平均相对误差为29.87%,反演精度优于三波段模型;平寨水库叶绿素a浓度空间分布差异明显,水面开阔的中心库区浓度较高,各支流上游河段浓度较低。Sentinel-2数据可较好地应用于喀斯特高原湖泊叶绿素a浓度反演,BP神经网络模型估测结果合理、可靠;研究结果可为平寨水库水环境治理提供科学依据。
-
关键词:
- Sentinel-2 /
- 叶绿素a浓度 /
- BP神经网络 /
- 三波段模型 /
- 平寨水库
Abstract: To realize remote sensing monitoring of chlorophyll-a in Pingzhai Reservoir, the measured chlorophyll-a concentration and quasi-synchronized Sentinel-2 data of Pingzhai Reservoir on November 17th and 18th, 2017 were selected. The BP neural network model was established by selecting the best band combination to invert the chlorophyll-a of Pingzhai Reservoir, and its spatial distribution characteristics was analyzed. The Sentinel-2 red edge band was more sensitive to chlorophyll-a than the visible light band and had greater potential for chlorophyll-a concentration inversion. The band combination method with the largest correlation coefficient were: B5/B4, [1/B4-1/B5]*B6, [1/B4-1/B5]*B7, and [1/B4-1/B5]*B8; the resolvable coefficient R2 of BP neural network model was 0.9160 and the average relative error was 29.87%. The inversion accuracy of BP neural network model was better than that of three-band model; the concentration distribution of chlorophyll-a in Pingzhai Reservoir was obviously different. The concentration of the central reservoir in the open water was higher, and the concentration in the upper reaches of each tributary was lower. The research showed that Sentinel-2 data could be well applied to the retrieval of chlorophyll-a concentration in karst plateau lakes. The prediction results of BP neural network model was reasonable and reliable. The research results could provide a scientific basis for the water environment management of Pingzhai Reservoir.-
Key words:
- Sentinel-2 /
- chlorophyll-a concentration /
- BP neural network /
- three-band model /
- Pingzhai Reservoir
-
程春梅, 李渊, 丁奕, 等. 基于GF-1/WFV的钱塘江叶绿素a和总悬浮物浓度遥感估算[J]. 长江科学院院报, 2019,36(1):21-28. 田野, 郭子祺, 乔彦超, 等. 基于遥感的官厅水库水质监测研究[J]. 生态学报, 2015, 35(7):2217-2226. 杨一鹏, 王桥, 肖青, 等. 基于TM数据的太湖叶绿素a浓度定量遥感反演方法研究[J]. 地理与地理信息科学, 2006, 22(2):5-8. 郑震. 基于OLI遥感影像的叶绿素a质量浓度反演研究[J]. 灌溉排水学报, 2017, 36(3):89-93,107. 朱晶晶, 陈晋, 王胜强, 等. 基于MERIS数据的滇池叶绿素浓度时空变化(2003-2009年)及趋势[J]. 湖泊科学, 2011, 23(4):581-590. 周连成, 陈军, 孙记红, 等. 基于CBERS-1影像监测太湖叶绿素a浓度的季节分布状况[J]. 光谱学与光谱分析, 2011, 31(2):530-534. 种丹, 李浩杰, 范硕, 等. 基于MODIS数据的云南九大高原湖泊叶绿素a浓度反演[J]. 生态学杂志, 2017, 36(1):277-286. 莫登奎, 严恩萍, 洪奕丰, 等. 基于Hyperion的东洞庭湖水质参数空间分异规律[J]. 中国农学通报, 2013, 29(5):192-198. 杜娟, 杨国范, 李佳奇. 基于环境小卫星的凌河叶绿素a浓度定量反演[J]. 节水灌溉, 2014(9):50-53,56. 朱云芳, 朱利, 李家国, 等. 基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演[J]. 环境科学学报, 2017, 37(1):130-137. 郭宇龙, 李云梅, 李渊, 等. 一种基于GOCI数据的叶绿素a浓度三波段估算模型[J]. 环境科学, 2015, 36(9):3175-3185. 黄耀欢, 江东, 庄大方, 等. 汤逊湖水体叶绿素浓度遥感估测研究[J]. 自然灾害学报, 2012, 21(2):215-222. 徐京萍, 张柏, 宋开山, 等. 基于半分析模型的新庙泡叶绿素a浓度反演研究[J]. 红外与毫米波学报, 2008,27(3):197-201. 杨伟, 陈晋, 松下文经. 基于生物光学模型的水体叶绿素浓度反演算法[J]. 光谱学与光谱分析, 2009, 29(1):38-42. 刘朝相, 宫兆宁, 赵文吉, 等. 基于SVM模型的妫水河叶绿素a浓度的遥感反演[J]. 遥感技术与应用, 2014, 29(3):419-427. 周方方. 水库水体叶绿素a光学性质及浓度遥感反演模式研究[D]. 杭州:浙江大学, 2011. 程春梅. 顾及时空差异性的太湖水体中叶绿素a浓度的遥感估算实验研究[D]. 南京:南京师范大学, 2014. 朱子先, 臧淑英. 基于遗传神经网络的克钦湖叶绿素反演研究[J]. 地球科学进展, 2012, 27(2):202-208. 吴志明, 李建超, 王睿, 等. 基于随机森林的内陆湖泊水体有色可溶性有机物(CDOM)浓度遥感估算[J]. 湖泊科学, 2018, 30(4):979-991. 裴洪平, 罗妮娜, 蒋勇. 利用BP神经网络方法预测西湖叶绿素a的浓度[J]. 生态学报, 2004,24(2):246-251. 张克鑫, 陆开宏, 金春华, 等. 基于BP神经网络的湖南镇水库叶绿素a浓度预测模型的研究[J]. 海洋湖沼通报, 2011(2):91-99. 陈江. 河口和近岸复杂水体的CDOM反演[D]. 杭州: 浙江大学, 2018. 李亭亭, 田礼乔, 李建, 等. 基于Sentinel卫星的浑浊水体叶绿素反演对比研究:以鄱阳湖为例[J]. 华中师范大学学报(自然科学版), 2017, 51(6):858-864. 李旭文, 侍昊, 张悦, 等. 基于欧洲航天局"哨兵-2A"卫星的太湖蓝藻遥感监测[J]. 中国环境监测, 2018, 34(4):169-176. 环境保护部. 水质叶绿素a的测定分光光度法:HJ 897—2017[S].北京:中国环境出版社,2017. 刘冰, 郭海霞. MATLAB神经网络超级学习手册[M]. 北京: 人民邮电出版社, 2014. HECHT-NIELSEN R. Kolmogorov’s mapping neural network existence theorem[C]// Proceedings of the IEEE International Conference on Neural Networks Ⅲ, 1987:11-13. 杨斌, 李丹, 王磊, 等. 基于Sentinel-2A岷江上游地表生物量反演与植被特征分析[J]. 科技导报, 2017, 35(21):74-80.
点击查看大图
计量
- 文章访问数: 298
- HTML全文浏览量: 55
- PDF下载量: 4
- 被引次数: 0