DEGRADATION OF AMOXICILLIN SIMULATED WASTEWATER USING A THREE-DIMENSIONAL ELECTRODES REACTOR
-
摘要: 电化学氧化法是一种高效且环保的处理技术,在对包括阿莫西林在内的抗生素的处理上具有显著优势。向传统二维电极反应器中添加活性炭作为粒子电极,能降低系统中传质阻力,提高电流效率。探究了利用三维电极反应器处理阿莫西林模拟废水的最佳工艺,并与传统二维电极反应器和单纯活性炭吸附工艺进行对比。结果表明:三维电极反应器处理阿莫西林适宜条件为石英砂占填充粒子总体积为10%,施加电流密度为5 mA/cm2,电解质为17 mmol/L Na2SO4,溶液初始pH为5.56,此时 TOC去除率为49.1%,阿莫西林去除率为99.0%;且三维电极反应器存在电解和吸附的协同作用,使TOC去除率高于单纯活性炭吸附法和二维电极反应器去除率的加和(49.1%>22.0%+8.7%),具有较好的应用前景。Abstract: Electrochemical oxidation is an efficient and environmental-friendly technology with significant advantages in the treatment of antibiotics including amoxicillin. The traditional two-dimensional electrode reactor packed activated carbon as particle electrode will reduce the mass transfer resistance in the system and improve current efficiency. This study explored the optimal conditions for the treatment of amoxicillin simulated wastewater by a three-dimensional electrode reactor, and compared with a two-dimensional electrode reactor and the adsorption process. The optimal conditions were as follows: the quartz sand accounted for 10% of the total volume of the packed particles, the current density was 5 mA/cm2, the electrolyte was 17 mmol/L Na2SO4, and the initial pH of the solution was 5.56. Under the optimal condition, the TOC removal rate was 49.1%, and the amoxicillin removal rate was 99.0%. The synergy between electrolysis and adsorption in the three-dimensional electrodes reactor made the TOC removal rate higher than that of adsorption and traditional two-dimensional electrode reactor (49.1%>22.0%+8.7%), showing a good application prospect.
-
傅海霞, 刘怡, 董志英, 等. 抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 2016,34(4):60-63,104. MAKOWSKA N, KOCZURA R, MOKRACKA J. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water[J]. Chemosphere, 2016,144:1665-1673. CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016,94:736-757. 金明兰, 刘凯, 徐莹莹, 等. 污水处理厂中磺胺类抗生素、抗性菌、抗性基因的特性[J]. 环境工程, 2015,33(11):1-4. JOHANSSON C H, JANMAR L, BACKHAUS T. Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria[J]. Aquat Toxicol, 2014,156:248-258. MUTIYAR P K, MITTAL A K. Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant[J]. Desalination & Water Treatment, 2013,51(31/32/33):6158-6164. PRAVEENA S M, SHAIFUDDIN S N M, SUKIMAN S, et al. Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): occurrence and potential risk assessments[J]. Science of the Total Environment, 2018,642:230-240. PUTRA E K, PRANOWO R, SUNARSO J, et al. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics[J]. Water Research, 2009,43(9):2419-2430. HOMAYOONFAL M, MEHRNIA M R. Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes[J]. Separation and Purification Technology, 2014,130:74-83. AY F, KARGI F. Advanced oxidation of amoxicillin by Fenton’s reagent treatment[J]. Journal of Hazardous Materials, 2010,179(1/2/3):622-627. MIRZAEI A, CHEN Z, HAGHIGHAT F, et al. Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: transformation mechanism and toxicity assessment[J]. Applied Catalysis B:Environmental, 2019,242:337-348. ZHANG C, JIANG Y H, LI Y L, et al. Three-dimensional electrochemical process for wastewater treatment: a general review[J]. Chemical Engineering Journal, 2013,228:455-467. ZHU X P, NI J R, XING X, et al. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system[J]. Electrochimica Acta, 2011,56(3):1270-1274. LI X Y, WU Y, ZHU W, et al. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields[J]. Electrochimica Acta, 2016,220:276-284. GARCIA E A, AGULLO-BARCELO M, BOND P, et al. Hybrid electrochemical-granular activated carbon system for the treatment of greywater[J]. Chemical Engineering Journal, 2018,352:405-411. 石岩, 王启山, 岳琳, 等. 三维电极/电Fenton法去除垃圾渗滤液中的COD[J]. 中国给水排水, 2008,24(19):87-90. 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019,33(7):1125-1132. 郑天龙. 微气泡/臭氧—三维电极反应器深度处理腈纶废水的研究[D]. 北京:北京科技大学, 2016. XIA Y J, DAI Q Z. Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: kinetics, energy demands and reaction pathways[J]. Chemosphere, 2018,205:215-222. CHEN G H. Electrochemical technologies in wastewater treatment[J]. Separation and Purification Technology, 2004,38(1):11-41. ADRIANO W S, VEREDAS V, SANTANA C C, et al. Adsorption of amoxicillin on chitosan beads: kinetics, equilibrium and validation of finite bath models[J]. Biochemical Engineering Journal, 2005,27(2):132-137. 于丽花, 薛娟琴, 罗瑶, 等. 电解液条件对苯酚降解及羟自由基生成的影响[J]. 环境工程学报, 2016,10(8):4043-4048. YANG C, YOU X, CHENG J H, et al. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B: Environmental, 2017,200:673-680. LAN Y D, COETSIER C, CAUSSERAND C, et al. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode[J]. Electrochimica Acta, 2017,231:309-318. KAUR R, KUSHWAHA J P, SINGH N. Electro-oxidation of amoxicillin trihydrate in continuous reactor by Ti/RuO2 anode[J]. Science of the Total Environment, 2019,677:84-97. MÉNDEZ E, GONZÁLEZ-FUENTES M A, REBOLLAR-PEREZ G, et al. Emerging pollutant treatments in wastewater: cases of antibiotics and hormones[J]. Journal of Environmental Science and Health, Part A, 2017,52(3):235-253. 孙超. 活性炭三维电极—活性炭纤维生物膜法处理阿莫西林模拟废水[D]. 泰安:山东农业大学, 2016.
点击查看大图
计量
- 文章访问数: 222
- HTML全文浏览量: 26
- PDF下载量: 4
- 被引次数: 0