EFFECT OF INFLUENT MODES AND RECIRCULATION POINT POSITION ON NITROGEN AND PHOSPHORUS REMOVAL BY A MULTI-STAGE BIOLOGICAL CONTACT OXIDATION PROCESS
-
摘要: 以实际生活污水(C/N(碳氮比)约为3)为处理对象,研究了进水方式和回流点位置对多段式生物接触氧化法脱氮除磷性能的影响,同时研究了微生物群落结构的变化特征。结果表明:在连续进水和间歇进水条件下,系统对COD去除率分别为87.61%和78.94%,但出水COD平均浓度达GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准,系统耐冲击负荷能力较强。当混合液从第6格回流到第1格时,COD和TN去除率分别为88.78%和83.10%,满足GB 18918—2002一级A排放标准,TN处理效果与回流点位置相关。系统污泥量较少,无剩余污泥排放,TP去除效果稍差,采用化学除磷,TP去除效果与回流点位置无关。通过对系统生物多样性和生物膜干质量的分析,表明增加回流改变了系统的微生物种群结构,提高了系统脱氮效率。Abstract: Taking actual domestic sewage with C/N of about 3 as the treatment object, the influence of influent mode and the position of the recirculation point on the function of denitrification and dephosphorization on multi-stage biological contact oxidation porcess was evaluated. The results showed that the removal rate of COD was 87.61% and 78.94% respectively, under the conditions of continuous water inlet and intermittent water inflow. But the average concentration of effluent COD met the Grade A in China’s national standard, GB 18918—2002. And the system had stronger ability for resisting shock load. When the mixed liquid was returned from the sixth grid to the first grid, the removal rate of COD and TN was 88.78% and 83.10% respectively, and it met the Grade A standard of GB 18918—2002 sewage discharge. The treatment effect of TN was related to the position of the recirculation point, and the sludge volume of the system was very low, with no excess sludge discharged. While it had little effect on total phosphorus removal in this condition. The chemical removal of total phosphorus was used. The removal effect of total phosphorus was independent on the position of the recirculation point. Through the analysis of the system biodiversity and biofilm quality, it was found that the system microbial population structure was changed by increasing the reflux. It improved the system nitrogen removal efficiency.
-
何争光,李宁,姬智,等. 分段进水A/O工艺强化脱氮除磷研究[J]. 中国给水排水, 2013, 29(17): 20-23. 葛俊,黄天寅,王涌涛,等. 处理微污染水的生物膜反应器启动及群落结构分析[J]. 中国给水排水, 2015, 31(3): 36-40. MUSZYNSKI A,TABERNACKA A,MIOBE D. Long-term dynamics of themicrobial community in a full-scale wastewater treatment plant[J]. International Biodeterioration and Biodegradation,2015, 100(5):44-51. ZHANG M,WANG C,PENG Y Z,et al.Organic substrate transformationand sludge characteristics in the integrated anaerobic anoxic oxic-biological contact oxidation (A2/O-BCO) system treating wastewater with low carbon/nitrogen ratio[J]. Chemical Engineering Journal,2016, 283(4): 47-57. FANG F,HAN H J,ZHAO Q,et al.Bioaugmentation of biologicalcontact oxidation reactor (BCOR) with phenol-degrading bacteria forcoal gasification wastewater (CGW) treatment[J]. Bioresource Technology,2013, 150(3): 314-320. 吕学研,季铁梅,阮晓红.生物接触氧化法净化供水原水现场试验[J].水资源与水工程学报,2016,27(2):6-10,17. 缪晶广. 微污染源水生物接触氧化处理技术[D].西安:西安建筑科技大学,2004. 陈汉辉,孙国胜.生物接触氧化法处理微污染源水的研究进展与应用[J].云南环境科学,2000,19(增刊1):132-135. 聂发辉,黄敏峰,鲁秀国,等.生物接触氧化-潜流型人工湿地组合工艺处理农村生活污水的试验研究[J].应用化工,2018,47(10):2162-2164,2168. 唐智洋,江云,纪荣平.生物接触氧化-滴滤工艺处理水产养殖废水的效能研究[J].环境工程,2016,34(8):50-53,57. 王洁,朱光灿,王卫,等.超声强化生物接触氧化的技术研究[J].环境工程,2016,34(增刊1):286-290. 付丽霞,崔宁,刘世虎,等.水解酸化-接触氧化-MBR一体化装置处理农村生活污水[J].环境工程,2018,36(11):49-52. 梁建军,阳琪琪,何强,等. A/O一体化生物接触氧化工艺的除污特性分析[J]. 中国给水排水, 2013, 29(3): 14-16. 谭小红,饶坤,黄安娜,等.水解酸化-二段生物接触氧化-水生植物法截污试验研究[J].环境工程,2015,33(9):59-63,68. 蒋晓阳,熊文军,刘子正,等. 竹制填料生物接触氧化工艺处理污染河水[J]. 环境工程学报, 2014, 8(1): 178-183. 张淼,彭永臻,王聪,等. 三段式硝化型生物接触氧化反应器的启动及特性[J]. 中国环境科学, 2015, 35(1): 101-109. 徐京,朱亮,丁炜,等. 挂膜方式对模拟河道生物反应器启动与稳态运行的影响[J]. 中国环境科学,2010,30(8):1091-1096. 韩剑宏,刘燕,朱浩君,等.反硝化生物滤池的自然挂膜启动研究[J].中国给水排水,2015,31(3):1-4. 王芮. 生物接触氧化法处理生活污水的试验研究[D].大连:大连交通大学,2014. 李海霞. 微生物强化在生活污水分散式处理中的应用[D].天津:天津科技大学,2006. 王宗华,庞金钊,杨宗政.校园生活污水的一体化处理装置及其耐冲击负荷性能研究[J].天津科技大学学报,2004,19(3):8-10. 刘雨,赵庆良,郑兴灿. 生物膜法污水处理技术[M]. 北京:中国建筑工业出版社, 2000: 122-123.
点击查看大图
计量
- 文章访问数: 161
- HTML全文浏览量: 13
- PDF下载量: 10
- 被引次数: 0