DIVERSITY OF IRON MINERALS AND THEIR ADSORPTION TO Cd IN FERROUS OXIDATION AND DENITRIFICATION BIOFILM REACTOR
-
摘要: 亚铁氧化反硝化过程,是指亚铁氧化和NO3--N还原相结合的生物矿化过程,该过程不仅可以实现水中NO3--N脱除,还可以得到对多种污染物有较强吸附去除能力的铁矿物。构建了亚铁氧化反硝化过程的连续流式生物膜反应器,分析了反应器运行3个月后内部生成的颗粒物特性及其对重金属镉(Cd)的吸附效果。结果表明:反应器内不同位置会生成颗粒成分不同的铁矿物,下部和中部以菱铁矿为主,上部以针铁矿为主。这些颗粒均具有较大的比表面积和多种有利于吸附的有机官能团,对于水中Cd2+具有较强的吸附能力,不同位置形成的颗粒物的吸附去除率从大到小依次为出水>上部>中部>下部,去除率均可达到84%以上,吸附动力学和热力学方程更符合准二级动力学方程和Freundlich模型。Abstract: Nitrate-dependent anaerobic ferrous iron oxidation refers to the biomineralization process coupled with ferrous oxidation and nitrate nitrogen reduction, which not only has the effect of denitrification on sewage, but also can obtain a series of iron minerals with strong adsorption and removal ability for multi pollutants. In this study, we constructed a continuous flow biofilm reactor based on this process for wastewater denitrification treatment, and analyzed the characteristics of particulate matters generated internally after three months of operation and their adsorption effect on cadmium (Cd). The results showed that the granules in different positions of the reactor contain different iron minerals, the bottom and middle particles were dominated by siderite, and the top particles were dominated by goethite. These particles had a large specific surface area and a variety of organic functional groups for adsorption, and strong adsorption capacity for Cd2+ in water. The adsorption removal rate of different positions of the reactor was in sequence of effluent>top>middle>bottom, all above 84%. The kinetic and thermodynamic equations complied well with the pseudo second-order model and Freundlich isotherms model, respectively.
-
STRAUB K L, BENZ M, SCHINK B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied & Environmental Microbiology, 1996, 62(4): 1458-1460. NIELSEN J L, NIELSEN P H. Microbial nitrate-dependent oxidation of ferrous iron in activated sludge[J]. Environmental Science & Technology, 1998, 32(22): 3556-3561. 王苏艳, 宋新山, 赵志淼, 等. 亚铁对水平潜流人工湿地反硝化作用的影响[J]. 环境科学学报, 2016, 36(2): 557-563. 王梦月, 马鲁铭. 催化铁强化低碳废水生物反硝化过程的探讨[J]. 环境科学, 2014, 35(7): 2633-2638. ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess & Biosystems Engineering, 2016, 39(2): 277-284. ZHOU Y, ZHANG Z Q, ZHANG J, et al. Understanding key constituents and feature of the biopolymer in activated sludge responsible for binding heavy metals[J]. Chemical Engineering Journal, 2016, 304: 527-532. 王茹, 郑平, 张萌, 等. 硝酸盐型厌氧铁氧化菌的种类、分布和特性[J]. 微生物学通报, 2015, 42(12): 2448-2456. EMERSON D, FLEMING E J, MCBETH J M. Iron-oxidizing bacteria: an environmental and genomic perspective[J]. Annual Review of Microbiology, 2010, 64(1):561-583. BAZYLINSKI D A, FRANKEL R B. Biologically controlled mineralization in Prokaryotes[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 217-247. 贾蓉芬,高梅影,彭先芝,等. 微生物矿化[M]. 北京: 科学出版社, 2009. MIOT J, BENZERARA K, OBST M, et al. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria[J]. Applied & Environmental Microbiology, 2003, 75(17): 5586-5591. ZHANG M, ZHENG P, ZENG Z, et al. Physicochemical characteristics and microbial community of cultivated sludge for nitrate-dependent anaerobic ferrous-oxidizing (NAFO) process[J]. Separation and Purification Technology, 2016, 169: 296-303. 沈东升, 李文兵, 姚俊, 等. 亚铁氧化微生物及其在环境污染修复中的作用机制[J]. 浙江大学学报(农业与生命科学版), 2011, 37(1): 112-118. 杨哲. 依赖硝酸盐型铁氧化菌与天然菱铁矿协同作用脱氮除磷研究[D]. 安徽: 合肥大学, 2016. SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894. 徐轶群, 顾园园, 姚婷, 等. 铁细菌胞外多聚物对铁矿物的调控形成及其环境意义[J]. 岩石矿物学杂志, 2013, 32(6): 782-788. LI Y F, LONG X X, CHONG Y X, et al. Characterization of the cell-Fe mineral aggregate from nitrogen removal employing ferrous and its adsorption features to heavy metal[J]. Journal of Cleaner Production, 2017, 156: 538-548. NIDA I, TABASSUM B, ELSAYED F A, et al. Groundwater contamination with cadmium concentrations in some West U. P. Regions, India[J]. Saudi Journal of Biological Sciences, 2018, 25: 1365-1368. LIU X M, ZHANG L B, MENG J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution, 2018, 239: 308-317. 张福凯, 徐龙君, 张丁月. 脱灰煤基活性炭吸附处理含镉废水[J]. 环境工程学报, 2014, 8(2): 559-562. 莫京倚, 张卫民, 陈家鸿, 等. 2种不同碱度钢渣及其负载HAP吸附镉的比较[J]. 环境工程学报, 2019, 13(8): 1800-1808. SUN W J, SLERRA-ALVAREZ R, MILNER L, et al. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments[J]. Environmental Science & Technology, 2009, 43(17): 6585-6591. 夏新星, 马腾, 王志强, 等. 载铁活性炭烧结滤芯的制备及其除砷性能[J]. 环境工程学报, 2019, 13(7): 1534-1540. XIU W, GUO H M, SHEN J X, et al. Stimulation of Fe(Ⅱ) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. Strain 2002[J]. Environmental Science & Technology, 2016, 50(12): 6449-6458. HOHAMANN C, WINKLER E, MORIN G, et al. Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize as during Fe(Ⅲ) mineral precipitation[J]. Environmental Science & Technology, 2010, 44(1): 94-101. 任天昊, 杨琦, 李群, 等.针铁矿对废水中Cr(Ⅵ)的吸附[J]. 环境科学与技术, 2015, 38(12Q): 72-77. 李欣, 谭周亮, 周后珍, 等. 3种微生物吸附剂对低浓度Cd2+的吸附特性研究[J]. 环境科学与技术, 2011, 34(12): 7-13. 崔慧瑛, 梁成华, 杜立宇, 等. 水铁矿对As(Ⅲ)的吸附特性的研究[J]. 浙江农业学报, 2012, 24(3): 490-493. SUN J, CHILLRUD S N, MAILLOUX B J, et al. Enhanced and stabilized arsenice retention in microcosms through the microbial oxidation of ferrous iron by nitrate[J]. Chemphere, 2016, 144:1106-1115. OCIŃSKI D, JACUKOWICZ-SOBALA I, MAZUR P, et al. Water treatment residuals containing iron and manganese oxides for arsenic removal from water-Characterization of physicochemical properties and adsorption studies[J]. Chemical Engineering Journal, 2016, 294:210-221. YANG J X, WEI W, PI S S, et al. Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1[J]. Bioresource Technology, 2015, 196: 533-539. SARAT C T, MULDLIAR S N, VIDYASHANKAR S, et al. Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics[J]. Bioresource Technology, 2015, 184:395-404. 何炳林, 黄文强. 离子交换与吸附树脂[M]. 上海: 上海科技教育出版社, 1995. 赵雅兰, 易筱筠, 雷娟, 等. 基于镉吸附的花生壳酶改性研究[J]. 矿物岩石地球化学通报, 2014, 33(2): 208-213. SUN J, CHILLRUD S N, MAILLOUX B J, et al. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate[J]. Chemosphere, 2016, 144:1106-1115. 吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632. 王丹丽, 董晓丹, 王恩德. 针铁矿对重金属离子的吸附作用[J]. 黄金, 2002, 23(2):44-46. CLEVELAND V, BINGHAM J, KAN E. Heterogeneous Fenton degradation of bisphenol a by carbon nanotube-supported Fe3O4[J]. Separation & Purification Technology, 2014, 133:388-395. LI X Y, HUANG Y, LI C, et al. Degradation of pCNB by Fenton like process using α-FeOOH[J]. Chemical Engineering Journal, 2015, 260: 28-36. 张晶, 郭学涛, 葛建华, 等. 针铁矿-腐殖酸的复合物对泰乐菌素的吸附[J]. 环境工程学报, 2016, 10(3): 1145-1151. 邵鹏辉, 唐朝春, 简美鹏, 等. 磷在磁铁矿-针铁矿混合相上的吸附[J]. 环境工程学报, 2013, 7(9): 3433-3438. DAVANTōS A, COSTA D, LEFōVRE G. Molybdenum(Ⅵ) adsorption onto lepidocrocite (γ-FeOOH): in situ vibrational spectroscopy and DFT+U theoretical study[J]. The Journal of Physical Chemistry C, 2016, 120(22):11871-11881. 鹿存房, 刘清才, 全学军. 利用污泥脱除燃煤电厂烟气中的汞[J]. 环境工程学报, 2017, 11(10): 5559-5564.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 18
- PDF下载量: 5
- 被引次数: 0