中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汞污染生物修复研究进展

贾威 陈金全 常军军

贾威, 陈金全, 常军军. 汞污染生物修复研究进展[J]. 环境工程, 2020, 38(5): 171-178. doi: 10.13205/j.hjgc.202005030
引用本文: 贾威, 陈金全, 常军军. 汞污染生物修复研究进展[J]. 环境工程, 2020, 38(5): 171-178. doi: 10.13205/j.hjgc.202005030
JIA Wei, CHEN Jin-quan, CHANG Jun-jun. BIOREMEDIATION OF MERCURY CONTAMINATION: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 171-178. doi: 10.13205/j.hjgc.202005030
Citation: JIA Wei, CHEN Jin-quan, CHANG Jun-jun. BIOREMEDIATION OF MERCURY CONTAMINATION: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 171-178. doi: 10.13205/j.hjgc.202005030

汞污染生物修复研究进展

doi: 10.13205/j.hjgc.202005030
基金项目: 

国家自然科学基金(51668067)

云南大学研究生科研创新基金项目(2018Z093)。

详细信息
    作者简介:

    贾威(1995-),男,硕士研究生,主要研究方向为重金属污染防治。1069217691@qq.com

    通讯作者:

    常军军(1985-),男,博士,教授,主要研究方向为环境污染生态修复。changjunjun@ynu.edu.cn

BIOREMEDIATION OF MERCURY CONTAMINATION: A REVIEW

  • 摘要: 汞污染的人为来源主要包括化石燃料燃烧、矿产开采与加工、垃圾焚烧及涉汞产品的生产使用等。生物修复法因具有成本低、易操作、生态友好等优点,在汞污染的治理与修复中具有良好的应用前景。综述了环境中汞污染的主要来源和污染现状,分析总结了基于植物和微生物作用的生态友好型技术在汞污染土壤和水体修复中的应用及作用机理的研究进展,并提出汞污染生物修复中应进一步研究和实践的问题,旨在为汞污染的生物修复提供科学参考。
  • CELO V, LEAN D R, SCOTT S L. Abiotic methylation of mercury in the aquatic environment[J]. Science of the Total Environment, 2006, 368(1):126-137.
    尚谦, 张长水. 含汞废水的污染特征及处理[J]. 有色金属加工, 1997(5):52-65.
    BOENTE C, SIERRA C, RODRIGUEZ-VALDES E, et al. Soil washing optimization by means of attributive analysis: case study for the removal of potentially toxic elements from soil contaminated with pyrite ash[J]. Journal of Cleaner Production, 2017, 142: 2693-2699.
    勾立争, 刘长波, 刘诗诚, 等. 热脱附法修复多环芳烃和汞复合污染土壤实验研究[J]. 环境工程, 2018, 36(2):184-187

    ,146.
    NRIAGU J, BECKER C. Volcanic emissions of mercury to the atmosphere: global and regional inventories[J]. Science of the Total Environment, 2003, 304(1):3-12.
    FRASER A, DASTOOR A, RYJKOV A. How important is biomass burning in Canada to mercury contamination?[J]. Atmospheric Chemistry and Physics, 2018, 18(10):7263-7286.
    MUNTHE J, MCELROY W J. Some aqueous reactions of potential importance in the atmospheric chemistry of mercury[J]. Atmospheric Environment Part A General Topics, 1992, 26(4):553-557.
    AHRENS L, MARUSCZAK N, RUBARTH J, et al. Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition[J]. Environmental Chemistry, 2011, 7(5):422-428.
    HU Y A, CHENG H F. Control of mercury emissions from stationary coal combustion sources in China: current status and recommendations[J]. Environmental Pollution, 2016, 218:1209-1221.
    STREETS D G, LU Z F, LEVIN L, et al. Historical releases of mercury to air, land, and water from coal combustion[J]. Science of The Total Environment, 2018, 615:131-140.
    CHENG H F, HU Y A. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China[J]. Bioresource Technology, 2010, 101(11):3816-3824.
    HU Y A, CHENG H F, TAO S C. The growing importance of waste-to-energy (WTE) incineration in China’s anthropogenic mercury emissions: emission inventories and reduction strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 97:119-137.
    ESDAILE L J, CHALKER J M. The mercury problem in artisanal and small-scale gold mining[J]. Chemistry-A European Journal, 2018:6905-6916.
    王琪, 唐丹平, 姜林, 等. 废弃荧光灯管的环境管理研究[J]. 环境污染与防治, 2012, 34(11):98-102.
    CUTILLAS-BARREIRO L, PEREZ-RODRIGUEZ P, GOMEZ-ARMESTO A, et al. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe[J]. Science of the Total Environment, 2016, 562:179-190.
    ROCHA-ROMAN L, OLIVERO-VERBEL J, CABALLERO-GALLARDOK R, et al. Impacto de la mineria del oro asociado con la contaminacion por mercurio en suelo superficial de san martin de loba, sur de bolivar (colombia)[J]. Revista Internacional De Contaminacion Ambiental, 2018, 34(1):93-102.
    CRYDERMAN D, LETOURNEAU L, MILLER F, et al. An ecological and human biomonitoring investigation of mercury contamination at the Aamjiwnaang first nation[J]. Ecohealth, 2016, 13(4):1-12.
    GERSON J R, DRISCOLL C T, HSU-KIM H, et al. Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers[J]. Elementa-Science of the Anthropocene, 2018, 6(1): 11.
    FAYIGA A O, IPINMOROTI M O, CHIRENJE T. Environmental pollution in Africa[J]. Environment Development & Sustainability, 2018, 20(1):1-33.
    BHAVE P, SHRESTHA R. Total mercury status in an urban water body, Mithi River, Mumbai and analysis of the relation between total mercury and other pollution parameters[J]. Environmental Monitoring and Assessment, 2018, 190(12):711.
    GAFUR N A, SAKAKIBARA M, SANO S. A case study of heavy metal pollution in water of Bone river by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia[J]. Water, 2018, 10(11):1-10.
    胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 2015, 24(5):879-885.
    SONG Z C, LI P, DING L, et al. Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China[J]. Journal of Geochemical Exploration, 2018, 194:81-87.
    ZHANG Y X, WANG M, HUANG B, et al. Soil mercury accumulation, spatial distribution and its source identification in an industrial area of the Yangtze Delta, China[J]. Ecotoxicology and Environmental Safety, 2018, 163:230-237.
    LIANG Y C, ZHU S Q, LIANG H D. Mercury enrichment in coal fire sponge in Wuda coalfield, Inner Mongolia of China[J]. International Journal of Coal Geology, 2018, 192:51-55.
    GAO J Y, WANG H, CAI W, et al. Pollution characteristics of atmospheric particulate mercury near a coal-fired power plant on the southeast coast of China[J]. Atmospheric Pollution Research, 2016, 7(6):1119-1127.
    HINCHMAN R, NEGRI M C, GATLIFF E G. Phytoremediation: using green plants to clean up contaminated soil, groundwater and wastewater[J]. Office of Scientific & Technical Information Technical Reports, 1996.
    LEONARD T L, TAYLOR J G E, GUSTIN M S, et al. Mercury and plants in contaminated soils: 2. Environmental and physiological factors governing mercury flux to the atmosphere[J]. Environmental Toxicology and Chemistry, 1998, 17(10):2072-2079.
    LV S Q, YANG B,KOU Y X,et al. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop,Helianthus tuberosus L. (Jerusalem artichoke)[J]. Peerj, 2018, 6(4):4325.
    ALCANTARA H J P, DORONILA A I, KOLEV S D. Phytoextraction potential of Manihot esculenta Crantz. (cassava) grown in mercury-and gold-containing biosolids and mine tailings[J]. Minerals Engineering, 2017, 114:57-63.
    XUN Y, FENG L, LI Y D, et al. Mercury accumulation plant, Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites[J]. Chemosphere, 2017, 189:161-170.
    MARRUGO-NEGRETE J, DURANGO-HERNÁNDEZ J, PINEDO-HERNÁNDEZ J, et al. Phytoremediation of mercury-contaminated soils by Jatropha curcas[J]. Chemosphere, 2015, 127:58-63.
    SMOLINSKA B, SZCZODROWSKA A. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil[J]. New Biotechnology, 2017, 38:74-83.
    LIU Z C, WANG L A, DING S M, et al. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L. and rhizosphere microorganism distribution of, Oxalis corniculata L[J]. Ecotoxicology and Environmental Safety, 2018, 160:171-177.
    CHANG S, WEI F, YANG Y, et al. Engineering tobacco to remove mercury from polluted soil[J]. Applied Biochemistry and Biotechnology, 2015, 175(8):3813-3827.
    GRIBOFF J, WUNDERLIN D A, MONFERRAN M V. Phytofiltration of As3+, As5+, and Hg by the aquatic macrophyte Potamogeton pusillus L, and its potential use in the treatment of wastewater[J]. International Journal of Phytoremediation, 2018, 20:914-921.
    MARRUGO-NEGRETE J, ENAMORADO-MONTES G, DURANGO-HERNÁNDEZ J, et al. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands[J]. Chemosphere, 2017, 167:188-192.
    BIBI A, FAROOQ U, NAZ S, et al. Phytoextraction of Hg by parsley (Petroselinum crispum) and its growth responses[J]. International Journal of Phytoremediation, 2016, 18(4):354-357.
    SITARSKA M, TRACZEWSKA T, FILYAROVSKAYA V. Removal of mercury (Ⅱ) from the aquatic environment by phytoremediation[J]. Desalination and Water Treatment, 2015, 57(3):1-10.
    GOMES M V T, SOUZA R R D, TELES V S, et al. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland[J]. Chemosphere, 2013, 103(5):228-233.
    AMIT P, AJAY K, ZHONG H. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review[J]. International Microbiology, 2018, 21(3):97-106.
    MAHBUB K R, KRISHNAN K, NAIDU R, et al. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp.SE2 isolated from contaminated soil[J]. Journal of Environmental Sciences, 2017, 51(1):128-137.
    MATSUI K, ENDO G. Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding[J]. Applied Microbiology & Biotechnology, 2018, 102(7):1-12.
    FRANCOIS F, LOMBARD C, GUIGNER J M, et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury[J]. Applied and Environmental Microbiology, 2012, 78(4):1097-1106.
    RAMARAJU K, JOSEPH A M, VISWANATH K B, et al. Exopolysaccharide from, Bacillus cereus VK1: enhancement, characterization and its potential application in heavy metal removal[J]. Colloids and Surfaces B: Biointerfaces, 2018, 171:327-334.
    CHEN J Q, DONG J, CHANG J J, et al. Characterization of an Hg(Ⅱ)-volatilizing, Pseudomonas sp. strain, DC-B1, and its potential for soil remediation when combined with biochar amendment[J]. Ecotoxicology and Environmental Safety, 2018, 163:172-179.
    MAHBUB K R, KRISHNAN K, NAIDU R, et al. Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil[J]. Environmental Technology & Innovation, 2016, 6:94-104.
    YU Z S, LI J B, LI Y, et al. A mer operon confers mercury reduction in a Staphylococcus epidermidis strain isolated from Lanzhou reach of the Yellow River[J]. International Biodeterioration & Biodegradation, 2014, 90:57-63.
    GIRI S, DASH H R, DAS S. Mercury resistant bacterial population and characterization of Bacillus sp. isolated from sediment of solid waste discharged point of steel industry[J]. National Academy Science Letters, 2014, 37(3):237-243.
    LIU B, WANG C G, LIU D X, et al. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa[J]. Plos One, 2017, 12(3):172984.
    CHEN J Q, DONG J, SHEN S L, et al. Isolation of the Hg(Ⅱ)-volatilizing Bacillus sp. strain DC-B2 and its potential to remediate Hg(Ⅱ)-contaminated soils[J]. Chemical Technology and Biotechnology, 2019, 94(5):1433-1440.
    MCCARTHY D, EDWARDS G C, GUSTIN M S, et al. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations[J]. Chemosphere, 2017, 184:694-699.
    MAHBUB K R, KRISHNAN K, ANDREWS S, et al. Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil[J]. Science of the Total Environment, 2017, 576:303-309.
    YANG Y K, ZHANG C, SHI X J, et al. Effect of organic matter and pH on mercury release from soils[J]. Journal of Environmental Sciences, 2007, 19(11):1349-1354.
    程晓伟, 刁永发, 刘静, 等. 滤料负载活性焦脱汞的实验研究[J]. 环境工程, 2016, 34(增刊1):711-714.
    WAGNER-DÖBLER I. Pilot plant for bioremediation of mercury-containing industrial wastewater[J]. Applied Microbiology & Biotechnology, 2003, 62(2/3):124-133.
    SINHA A, KHARE S K. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application[J]. Biodegradation, 2012, 23(1):25-34.
    SONE Y, MOCHIZUKI Y, KOIZAWA K, et al. Mercurial-resistance determinants in Pseudomonas strain K-62 plasmid pMR68[J]. AMB Express, 2013, 3(1):1-7.
    ROJAS L A,YANEZ C, GONZALEZ M, et al. Characterization of the metabolically modified heavy metal-resistant cupriavidus metallidurans Strain MSR33 generated for mercury bioremediation[J]. Plos One, 2011, 6(3):e17555.
    TARIQ A, LATIF Z. Bioremediation of mercury compounds by using immobilized nitrogenfixing bacteria[J]. International Journal of Agriculture & Biology, 2014, 16(6):1129-1134.
    DRANGUET P, LE F S, COSIO C, et al. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms[J]. Environmental Science Processes & Impacts, 2017, 19(1):38-49.
  • 加载中
计量
  • 文章访问数:  157
  • HTML全文浏览量:  31
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18

目录

    /

    返回文章
    返回