EFFECT OF INOCULATION WITH AM FUNGI ON MAIZE GROWTH AND HYPERSPECTRAL ESTIMATION OF TOTAL NITROGEN CONTENT IN MAIZE LEAVES
-
摘要: 为了快速、准确测定玉米叶片中的全氮含量,实现利用高光谱遥感技术对微生物修复作用下氮元素的监测,现设接种丛枝菌根(M)和不接种菌根的对照组(CK),分别测定2个处理下叶片理化参数和光谱反射率数据,研究接种AM真菌对玉米生长的影响并采用逐步回归分析法建模反演叶片全氮含量。结果表明:接种AM真菌可提高不同叶位的叶片全氮、全磷、全钾及叶绿素含量,同时显著提高玉米的生物量和叶片含水率;不同的处理组中全氮含量对不同特征参数的相关性显著情况相同,但相关系数有所差异;2个处理均使用逐步线性回归法,以筛选出的9个极显著相关的光谱特征参数为自变量,对玉米叶片氮含量建模。其中,CK中模型决定系数R2最高可达0.8361,M组中模型的决定系数最高可达0.893,可以较好地估测玉米叶片全氮含量。Abstract: In order to quickly and accurately determine the total nitrogen content in maize leaves and monitor the nitrogen element content under microbial remediation by hyperspectral remote sensing technology, two levels of AM fungal treatment were set up, with(M) and without (CK) arbuscular mycorrhizal Fungi inoculated. The physicochemical parameters and spectral reflectance data of leaves under the two treatments were measured respectively, and the effects of AM fungi inoculation on maize were studied. Stepwise regression method was used to model and retrieve the total nitrogen content of leaves. The results showed that inoculating AM fungi could increase the contents of total nitrogen, total phosphorus, total potassium and chlorophyll in leaves at different leaf positions, and significantly increase the biomass and leaf water content of maize. The correlation of total nitrogen content in different treatments was similar to that in different characteristic parameters, but the correlation coefficients were different. The stepwise linear regression method was used to estimate the nitrogen content of maize leaves by using the nine extremely significant spectral parameters as independent variables. Among them, the model determination coefficient R2 in CK was up to 0.8361, and the determination coefficient of M model was up to 0.893, which could estimate the total nitrogen content of maize leaves.
-
Key words:
- AM fungi /
- total nitrogen content /
- hyperspectral /
- stepwise linear regression
-
GUTJAHR C, PARNISKE M. Cell biology: control of partner lifetime in a plant-fungus relationship[J]. Current Biology, 2017, 27(11):R420-R423. 王浩,方燕,刘润进,等.丛枝菌根中养分转运、代谢、利用与调控研究的最新进展[J].植物生理学报,2018,54(11):1645-1658. PATTARAWADEE S N, SOMBUN T,SUPRANEE N. Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn[J]. Agriculture and Natural Resources, 2016, 50(3): 173-178. HERNANDEZ R R, ALLEN M F. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory [J]. New Phytologist, 2013, 200(2): 547-557. 陈书琳,毕银丽. 遥感技术在微生物复垦中的应用研究[J]. 国土资源遥感, 2014, 26(3): 16-23. 陈书琳,毕银丽,齐礼帅,等. 接种菌根大豆叶绿素含量差异的光谱特征分析[J]. 中国矿业大学学报,2015,44(1):170-175. 毕银丽,孙江涛,YPYSZHAN Zhakypbek,等. 不同施磷水平下接种菌根玉米营养状况及光谱特征分析[J]. 煤炭学报, 2016, 41(5): 1227-1235. JIN LIANG, HU KELIN, TIAN MINGMING, et al. Diagnosis of nitrogen content in upper and lower corn leaves Bbased on hyperspectral data [J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1032-1037. 余克强,赵艳茹,李晓丽,等. 高光谱成像技术的不同叶位尖椒叶片氮素分布可视化研究[J]. 光谱学与光谱分析,2015,35(3): 746-750. LIU H Y, ZHU H C. Hyperspectral characteristic analysis for leaf nitrogen content in different growth stages of winter wheat[J]. Applied Optics, 2016, 55(34): 151-161. 王树文,牛羽新,马昕宇,等.基于高光谱的抽穗期寒地水稻叶片氮素预测模型[J].农机化研究,2019,41(3):158-164. 吴伟斌,李佳雨,张震邦,等. 基于高光谱图像的茶树LAI与氮含量反演[J]. 农业工程学报,2018,34(3):195-201. PHILLIPS J M, HAYMAN D S. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British MycolSociety, 1970, 55(1): 158-161. GIOVANNETTIM,MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 1980, 84(3): 489-500. 范云豹,赵文吉,宫兆宁,等. 基于高光谱信息的芦苇和香蒲地上干生物量反演方法研究[J]. 湿地科学,2016,14(5):654-664. 王渊,黄敬峰,王福民,等. 油菜叶片和冠层水平氮素含量的高光谱反射率估算模型[J]. 光谱学与光谱分析,2008,28(2): 273-277. 邹小波,张小磊,石吉勇,等. 基于高光谱图像的黄瓜叶片叶绿素含量分布检测[J]. 农业工程学报,2014,30(13):169-175. 余蛟洋,常庆瑞,由明明,等. 基于高光谱和BP神经网络模型苹果叶片SPAD值遥感估算[J]. 西北林学院学报,2018,33(2):156-165. 雷志勇, 龚云丽, 杜善周,等. 接种丛枝菌根真菌对露天矿区不同配比沙土与黏土的培肥效应分析[J]. 环境工程, 2019, 37(1): 172-175,112. 期刊类型引用(9)
1. 贾尚晖,陈薪卉,金佳宇. 全球气候变化与股票市场风险——基于GARCH-Copula-CoVaR模型. 中央财经大学学报. 2025(02): 105-121+138 . 百度学术
2. 张诗悦. 光伏发电装备减碳技术的边际减排成本模型研究. 中国能源. 2024(07): 39-48 . 百度学术
3. 宁礼哲,任家琪,张哲,蔡博峰,周才华. 2020年中国区域及省级电网电力碳足迹研究. 环境工程. 2023(03): 229-236 . 本站查看
4. 宁礼哲,张哲,蔡博峰,周才华. 2020年中国区域和省级电网温室气体排放因子研究. 环境工程. 2023(03): 222-228 . 本站查看
5. 梁可曼,聂景琦,刘第舒,王玉玮. 综合能源服务商参与碳交易的可行性探究. 现代工业经济和信息化. 2023(08): 200-204+220 . 百度学术
6. 雷春元,胡瑞柱,李恺弘,黄廷林. 结晶造粒法中CO_2-NaOH联用技术软化高硬度水静态试验. 净水技术. 2022(10): 38-42 . 百度学术
7. 孙月巧,郑宏飞,孔慧. 碳中和背景下煤电转型关键技术研究与展望. 动力工程学报. 2022(11): 1013-1023 . 百度学术
8. 吴俊达,赵毅,孙文瑶. 适用于环境-经济调度需求的火电机组碳排放特性模型. 综合智慧能源. 2022(11): 56-62 . 百度学术
9. 王磊. 新能源风电项目成本控制探讨. 光源与照明. 2022(09): 142-144 . 百度学术
其他类型引用(16)
-

计量
- 文章访问数: 115
- HTML全文浏览量: 8
- PDF下载量: 2
- 被引次数: 25