SIMULATION EXPERIMENT OF TRANSPORT AND TRANSFORMATION OF WATER-SOLUBLE Cr(Ⅵ) IN SOIL UNDER THE ACTION OF MICROORGANISM
-
摘要: 现代工业的发展使Cr(Ⅵ)土壤污染问题日益突出,针对Cr(Ⅵ)土壤污染防治的相关研究逐渐引起广泛重视。选取低风险地块土壤为实验材料,以土柱淋滤实验为基础,探究在混合芽孢杆菌的作用下,土壤中水溶态Cr(Ⅵ)的迁移和转化。结果表明:水溶态Cr(Ⅵ)在土壤中的迁移动力来源于土壤中水分的迁移。在对照组中,土壤中水溶态Cr(Ⅵ)的迁移呈现出随着土壤深度增加浓度下降的趋势;在混合芽孢杆菌处理组中,芽孢杆菌在前期(0~10 d)会阻碍Cr(Ⅵ)的迁移,在中后期(10~30 d)阻碍作用减弱。在迁移的过程中,混合芽孢杆菌的作用使土壤中水溶态Cr(Ⅵ)的浓度降低,例如土柱淋滤30 d后,175-H土柱相比于175-D土柱在5,10,15,20 cm深度处土壤的水溶态Cr(Ⅵ)浓度分别降低了3.55,2.03,1.87,1.31 mg/kg。同时,淋滤含Cr(Ⅵ)溶液使土壤中铬耐性菌的相对丰度有所增加,例如芽孢杆菌。Abstract: The development of modern industry caused Cr(Ⅵ) soil pollution increasingly prominent. The researches on the prevention and control of soil pollution with Cr(Ⅵ) attracted more and more attention. This study selected the low-risk plot soil as the experiment material. Based on soil column leaching experiments, the migration and transformation of water-soluble Cr(Ⅵ) in the soil under the action of mixed Bacillus were investigated. The results showed that the water-soluble Cr(Ⅵ) migration in soil was motivated by the migration of water in soil. In the control group, the migration of water-soluble Cr(Ⅵ) in the soil showed a trend of decreasing concentration with increasing soil depth; in the mixed Bacillus treatment group, Bacillus hindered water-soluble Cr(Ⅵ) migration in the early stage(0~10 days), but had little effect in the middle and later stage(10~30 days). During the migration process, the effect of mixing Bacillus made soil water soluble Cr(Ⅵ) concentration reduced. For example, after 30 days of soil column leaching, the water-soluble Cr(Ⅵ) concentration of the 175-H soil column compared with the 175-D soil column at the depths of 5, 10, 15, 20 cm were decreased by 3.55, 2.03, 1.87, 1.31 mg/kg. At the same time, the leaching of Cr(Ⅵ)-containing solution increased the relative abundance of chromium-resistant bacteria in the soil, such as Bacillus.
-
Key words:
- soil /
- water-soluble hexavalent chromium /
- mixed Bacillus Cohn /
- migration /
- transformation
-
考庆君,吴坤.铬的生物学作用及毒性研究进展[J].中国公共卫生,2004,20(11):1398-1400. 陈英旭,何增耀,吴建平.土壤中铬的形态及其转化[J].环境科学,1994,15(3):53-56. KRISHNA K R, PHILIP L. Bioremediation of Cr(Ⅵ) in contaminated soils[J]. Journal of Hazardous Materials, 2005, 121(1/2/3): 109-117. 张聪慧,申向东,邹欲晓.土壤中Cr(Ⅵ)离子在低温环境中的迁移规律研究[J].农业环境科学学报,2019,38(9):2138-2145. 王成文,许模,张俊杰,等.土壤pH和Eh对重金属铬(Ⅵ)纵向迁移及转化的影响[J].环境工程学报,2016,10(10):6035-6041. 张蕊. Cr(Ⅵ)在土壤中迁移转化影响因素研究及风险评价[D].长春:吉林大学,2013. 魏蓝. 土壤微生物对六价铬的还原及稳定化效果研究[D].苏州:苏州科技大学,2017. 苏长青,李立清,杨志辉,等.好氧条件下铬污染土壤中Cr(Ⅵ)的土著微生物还原[J].中国有色金属学报(英文版),2019,29(6):1304-1311. 肖伟,王磊,张思维,等.Cr(Ⅵ)还原细菌Bacillus cereus S5.4的筛选鉴定及还原特性研究[J].工业微生物,2007,37(6):1-6. 朱培蕾,焦仕林,姜朴,等.Cr(Ⅵ)还原菌Cr4-1的鉴定和还原影响因素的优化[J].卫生研究,2015,44(2):201-205,210. 郝孔利,张杰.细菌和真菌去除Cr(Ⅵ)机理的研究进展[J].环境科技,2018,31(6):66-70. 赵虎彪. 铁系物还原稳定技术在铬污染土壤修复中的应用研究[D].杭州:浙江大学,2019. GUAN X H, DONG H R, MA J, et al. Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: batch uptake behavior[J].Journal of Environmental Sciences, 2011, 23(3):372-380. ACHAL V, KUMARI D, PAN X. Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium[J].Research Journal of Microbiology, 2011, 6(7):166-171. DAS S, MISHRA J, DAS S K, et al. Investigation on mechanism of Cr (Ⅵ) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil[J].Chemosphere, 2014, 96(2):112-121. BESTAWY E E, HELMY S, HUSSIEN H, et al. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria[J].Applied Water Science, 2013, 3(1):181-192. 孙慧慧. 污泥—豆渣联合修复铬污染土壤研究[D].重庆:重庆大学,2018. INTHAVONGXAI PHOUNGERN(金山). 厌氧污泥、餐厨垃圾与硫酸亚铁协同处理铬污染土壤实验研究[D].南宁:广西大学,2018. 中华人民共和国农业部.土壤检测第6部分:土壤有机质的测定:NY/T 1121.6—2006[S].北京:中国农业出版社, 2006. BURTON E D, CHOPPALA G, KARIMIAN N, et al. A new pathway for hexavalent chromium formation in soil: fire-induced alteration of iron oxides[J]. Environmental Pollution, 2019,247: 618-625. 中华人民共和国国家标准GB 7467—87水质三价铬的测定二苯酰二肼分光光度法[S].北京:国家标准出版社, 2012. LI X Z, RUI J D, MAO Y J, et al. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biology and Biochemistry, 2014,68: 392-401. LOZUPONE C A, KNIGHT R. UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005,71: 8228-8235. MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011,27(21): 2957-2963. RUI J P, LI J B, ZHANG S H, et al. The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters[J]. Biotechnology for Biofuels, 2015,8: 158. 李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-33. 容群,罗栋源,边鹏洋,等.土壤中铬的迁移转化研究进展[J].四川环境,2018,37(2):156-160. 傅臣家,刘洪禄,吴文勇,等.六价铬在土壤中吸持和迁移的试验研究[J].灌溉排水学报,2008,27(2):9-13,42. 应珊珊. 基于贝叶斯方法的土壤溶质迁移转化反演研究[D].杭州:浙江大学,2018. 裴青宝. 红壤土壤水分溶质运移特性及滴灌关键技术研究[D].西安:西安理工大学,2018. 何敏艳. 高效铬还原菌Bacillus cereus SJ1和Lysinibacillus fusiformis ZC1的铬还原特性和全基因组序列分析[D].武汉:华中农业大学,2010. 焦仕林,朱培蕾,姜朴,等.蜡样芽孢杆菌还原六价铬效果分析[J].中国公共卫生,2016,32(10):1326-1329. 张玥,岳蕙颖,王进.一株耐铬细菌的除铬研究[J].广东化工,2015,42(24):80-81. PRIESTER J H,OLSON S G,WEBB S M, et al. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms[J]. Applied and Environmental Microbiology,2006,72(3):1988-1996. DOGAN N M,KANTAR C,GULCAN S, et al. Chromium(Ⅵ) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(Ⅵ) contamination[J]. Environmental Science & Technology,2011,45(6):2278-2285. 肖文丹,叶雪珠,孙彩霞,等.铬耐性菌对土壤中六价铬的还原作用[J].中国环境科学,2017,37(3):1120-1129.
点击查看大图
计量
- 文章访问数: 212
- HTML全文浏览量: 34
- PDF下载量: 1
- 被引次数: 0