中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性

陈窈君 李来顺 吕正勇 闵玉涛

陈窈君, 李来顺, 吕正勇, 闵玉涛. 湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性[J]. 环境工程, 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
引用本文: 陈窈君, 李来顺, 吕正勇, 闵玉涛. 湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性[J]. 环境工程, 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
CHEN Yao-jun, LI Lai-shun, LV Zheng-yong, MIN Yu-tao. RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011
Citation: CHEN Yao-jun, LI Lai-shun, LV Zheng-yong, MIN Yu-tao. RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 67-74. doi: 10.13205/j.hjgc.202006011

湿法解毒还原工艺对铬渣中Cr(Ⅵ)的治理特性

doi: 10.13205/j.hjgc.202006011
基金项目: 

国家重点研发计划资助项目(2018YFC1802200,2018YFC1802205)。

详细信息
    作者简介:

    陈窈君(1994-),女,硕士,主要研究方向为土壤和地下水修复。chenyj2419@bgechina.cn

    通讯作者:

    李来顺(1989-),男,硕士,主要研究方向为土壤和地下水修复。lilaishun@bgechina.cn

RESEARCH ON WET DETOXIFICATION TECHNOLOGY OF CHROMITE ORE PROCESSING RESIDUE

  • 摘要: 以治理铬渣中的Cr(Ⅵ)污染为目的,提出了硫酸浸出-硫酸亚铁还原的铬渣湿法解毒工艺,在对铬渣处理前后的表面形貌进行表征的基础上,探究了不同处理条件下铬渣中Cr(Ⅵ)的处理效果及其修复机理。结果表明:铬渣湿法球磨时间为20 min时,铬渣颗粒98.68%过200目筛,水溶性Cr(Ⅵ)的浸出率可达40.96%;铬渣硫酸添加量为60%,液固比为4∶1,酸溶时间为2.5 h时,Cr(Ⅵ)浸出趋于饱和,此时浸出终点pH为5.8,水溶性和酸溶性Cr(Ⅵ)总浸出率为95.38%;硫酸亚铁添加量为40%时,铬渣中Cr(Ⅵ)含量下降为1.38 mg/kg。铬渣中Cr(Ⅵ)的去除主要与硫酸对含Cr(Ⅵ)矿物的溶解、SO42-和CrO42-的离子交换以及Fe(Ⅱ)对溶液中Cr(Ⅵ)的还原作用有关。
  • LI Y Y, LIANG J L, YANG Z H, et al. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2[J]. Science of the Total Environment, 2019, 658: 315-323.
    陈滨宇. 解毒铬渣堆放场周围环境铬污染规律研究[J]. 环境科学与技术, 1989, 47(4): 8-10.
    WAZNE M, JAGUPILLA S C, MOON D H, et al. Assessment of calcium polysulfifide for the remediation of hexavalent chromium in chromite ore processing residue (COPR)[J]. Journal of Hazardous Materials, 2007, 143(3): 620-628.
    MOON D H, WAZNE M, DERMATAS D, et al. Long-term treatment issues with hromite ore processing residue (COPR): Cr6+ reduction and heave [J]. Journal of Hazardous Materials, 2007, 143(3): 629-635.
    荣伟英, 周启星. 铬渣堆放场地土壤的污染过程、影响因素及植物修复[J]. 生态学杂志, 2010, 29(3): 598-604.
    DERMATAS D, CHRYSOCHOOU M, MOON D H, et al. Ettringite-induced heave in hromite ore processing residue (COPR) upon ferrous sulfate treatment[J]. Environmental Science & Echnology, 2006, 40(18): 5786-5792.
    盛灿文, 柴立元, 王云燕,等. 铬渣的湿法解毒研究现状及发展前景[J]. 工业安全与环保, 2006, 32(2): 1-3.
    LI Y Y, CUNDY A B, FENG J X, et al. Remediation of hexavalent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J]. Journal of Environmental Management, 2017, 192: 100-106.
    JAGUPILLA S C, WAZNE M, MOON D H. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue[J]. Chemosphere, 2015, 136: 95-101.
    GEELHOED J S, MEEUSSEN J C N, ROE M J, et al. Effect of iron(Ⅱ) sulfate addition on chromium(Ⅵ) leaching from columns of chromite ore processing residue[J]. Environmental Science & Technology, 2003, 37(14): 3206-3213.
    JAGUPILLA S C, MOONA D H, WAZNE M, et al. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate[J]. Journal of Hazardous Materials, 2009, 168: 121-128.
    宋艳, 杨志平, 康绍辉,等. 铬渣中Cr(Ⅵ)的浸出及还原试验研究[J]. 湿法冶金, 2017, 36(5):380-383.
    斯塔姆W, 摩尔根J. 水化学: 天然水体化学平衡导论[M]. 汤鸿霄,译. 北京:科学出版社, 1987, 129-134.
    JAGANYI D, WHEELER P J. Rooibos tea: equilibrium and extraction kinetics of aspalathin[J]. Food Chemistry, 2003, 83: 121-126.
    刘帅霞. 两段式还原工艺解毒铬渣技术研究[D]. 上海:东华大学, 2013.
    MATERN K, KLETTI H, MANSFELDT T. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites[J]. Chemosphere, 2016, 155: 188-195.
    YAO S, JING L, MIAO P, et al. Identification of Cr(Ⅵ) speciation in ferrous sulfate-reduced chromite ore processing residue (rCOPR) and impacts of environmental factors erosion on Cr(Ⅵ) leaching [J]. Journal of Hazardous Materials, 2019, 373: 389-396.
    CHRYSOCHOOU M, DERMATAS D. Application of the Rietveld method to assess chromium(Ⅵ) speciation in chromite ore processing residue[J]. Journal of Hazardous Materials, 2007, 141(2): 370-377.
    GUO B, SASAKI K, HIRAJIMA T, et al. Selenite and selenate uptaken in ettringite: immobilization mechanisms, coordination chemistry, and insights from structure[J]. Cement Concrete Research, 2017, 100: 166-175.
    PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr(Ⅲ) and Fe(Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264: 490-497.
    MILLS C T, BERN C R, WOLF R E, et al. Modifications to EPA method 3060A to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Enviromental Science & Technology, 2017, 51(19): 11235-11243.
    KARAMALIDIS A K, VOUDRIAS E A. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement[J]. Environmental Science & Technology, 2008, 42(16): 6124-6130.
    GLASSER F P. Fundamental aspects of cement solidification and stabilisation[J]. Journal of Hazardous Materials, 1997, 52(2/3): 151-170.
    HILLIER S, ROE M J, GEELHOED J S, et al. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue[J]. Science of the Total Environment, 2003, 308(1/2/3): 195-210.
    WU J N, LI C L, YANG F. The disposition of chromite ore processing residue (COPR) incorporating industrial symbiosis[J]. Journal of Cleaner Production, 2015, 95: 156-162.
    TINJUM J M, BENSON C H, EDIL T B. Mobilization of Cr(Ⅵ) from chromite ore processing residue through acid treatment[J]. The Science of the Total Environment, 2008, 391(1): 13-25.
    VELASCO A, RAMÍREZ M, HERNÁNDEZ S, et al. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes[J]. Journal of Hazardous Materials, 2012, 207/208: 97-102.
    YANG H S, CHE Y J, LENG F G. Calcium leaching behavior of cementitious materials in hydrochloric acid solution[J]. Scientific Reports, 2018, UK 8.
    WAZNE M, JAGUPILLA S C, MOON D H, et al. Leaching mechanisms of Cr(Ⅵ) from chromite ore processing residue[J]. Journal of Environmental Quality, 2008, 37(6): 2125-2134.
    CHRYSOCHOOU M, FAKRA S C, MARCUS M A, et al. Microstructural analyses of Cr(Ⅵ) speciation in chromite ore processing residue (COPR)[J]. Environmental Science & Technology, 2009, 43(14): 5461-5466.
    MOON D H, WAZNE M, DERMATAS D, et al. Evaluation of ettringite-related swelling mechanisms for treated chromite ore processing residue[J]. Environmental Science and Pollution Research International, 2015, 22(1): 738-744.
    徐文彬.铬渣解毒与氧化铬清洁制备工艺的研究[D].长沙:中南大学,2011.
    PALMER C D, WITTBRODT P R. Processes affecting the remediation of chromium-contaminated sites[J]. Environmental Health Perspectives, 1991, 92: 25-40.
    WANG X, ZHANG J D, WANG L L, et al. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): importance of H+ and SO42-[J]. Journal of Hazardous Materials, 2017, 321: 720-727.
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-28

目录

    /

    返回文章
    返回