REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA
-
摘要: 机械厂电镀加工过程中产生的电镀废水,会造成土壤六价铬和氰化物污染。以长期利用电镀工艺的污染场地修复项目为依托,通过前期场地环境调查和风险评估结果,分析场地土壤污染程度和污染范围,确定修复目标和工程量;综合场地特性和污染特征,进行修复技术筛选,确定以"化学氧化+化学还原-固化/稳定化"为核心的污染土壤修复技术工艺;通过小试和中试,获得最佳修复药剂组成和添加比例,并进行工程实施。结果表明:Cr(Ⅵ)和氰化物复合污染土壤经化学氧化+化学还原-固化/稳定化工艺处理后,最大超标浓度由原来的37.3,186.0 mg/kg,分别降低至对应的标准限值3.0,22 mg/kg以下,Cr(Ⅵ)浸出浓度<0.5 mg/L,满足修复要求。该修复工程的成功实践,可以为其他复合污染场地修复工程的设计与实施提供参考。Abstract: The electroplating wastewater generated during the electroplating process of the machinery factory will cause soil hexavalent chromium and cyanide pollution. Relying on the long-term use of the electroplating process of contaminated site remediation projects, the remediation target and the amount of work were determined through the preliminary site environmental investigation and risk assessment results, and the site soil pollution degree and pollution scope analysis; synthesis of site features and pollution characteristics, conduction of remediation technology screening determined that chemical oxidation, chemical reduction and solidification or stabilization was the core remediation technology for the project. The optimal composition and appending proportion of repairing agents were obtained by conducting small-scale and pilot-scale experiments, and used to implement the project. The results showed that after the chemical oxidation, chemical reduction and solidification or stabilization processing procedure of the hexavalent chromium and cyanide compound contaminated soil, the maximum exceeded concentration was reduced from the original 37.3, 186.0 mg/kg to below the corresponding standard limits of 3.0, 22 mg/kg, respectively; the leaching concentration of hexavalent chromium was lower than 0.5 mg/L, meeting the remediation requirements. The successful practice of the remediation project could provide reference for the design and implementation of remediation projects of other compound contaminated sites.
-
李先荣,陈宁,董明甫,等. 黄磷尾气解毒铬渣[J]. 无机盐工业,2014,46(12):54-56. 肖俊钧,周卫东,周健峰,等. 液压支架立柱表面处理工艺[J]. 煤矿机械,2018,39(10):98-101. 刘继东,胡佳晨,王欢,等. 某电镀厂旧址铜、镍、六价铬复合污染土壤修复工程实例[C]//环境工程2019年全国学术年会,北京,2019. ZHANG J, LIU L, LIANG Y, et al. Enhanced precipitation of cyanide from electroplating wastewater via self-assembly of bimetal cyanide complex[J]. Separation and Purification Technology, 2015, 150:179-185. 肖友程,许超,王扬,等. 河池市某砒霜厂污染土壤固化/稳定化修复工程实例[J]. 环境工程,2018,36(3):176-179. 颜湘华,刘星海,王兴润,等. 改性芬顿试剂修复农药污染土壤的工艺条件优化[J]. 环境工程技术学报,2020,10(2):288-292. 赵珍丽,赵委托,黄庭,等. 电镀厂周边大气PM10中重金属季节性分布特征及生态风险评价[J]. 环境科学,2018,39(1):18-26. 史开宇, 颜湘华, 范琴,等. 铬污染场地渣土混合物的化学还原修复[J]. 环境工程学报, 2019, 13(4):213-218. 许维通, 张紫薇, 苑文仪,等. 基于硫酸亚铁的机械化学还原法处理六价铬污染土壤[J]. 环境工程学报, 2018,12(6):1759-1765. 白利平,罗云,刘俐,等. 污染场地修复技术筛选方法及应用[J]. 环境科学,2015,36(11):4218-4224. 尹贞,张钧超,廖书林,等. 铬污染场地修复技术研究及应用[J]. 环境工程,2015,33(1):159-162. SOPHIA A, SWAMINATHAN K. Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste[J]. Chemosphere, 2005, 58(1):75-82. 彭扬波. 电镀中难溶氰化物的环保处理方法[J]. 电镀与涂饰, 2017,36(5):260-264. 中华人民共和国生态环境部. 污染地块风险管控与土壤修复效果评估技术导则(试行):HJ 25.5—2018[S]. 北京:中国环境出版社,2018. 中华人民共和国生态环境部. 土壤环境质量建设用地污染风险管控标准(试行):GB 36600—2018[S]. 北京:中国环境出版社,2018.
点击查看大图
计量
- 文章访问数: 184
- HTML全文浏览量: 17
- PDF下载量: 6
- 被引次数: 0