REMOVAL PATHWAYS OF TYPICAL ANTIBIOTICS FROM LIVESTOCK WASTEWATER BY CONSTRUCTED WETLAND
-
摘要: 人工湿地处理畜禽养殖污水过程中,吸附作用为土霉素、环丙沙星和磺胺二甲基嘧啶在系统内的首要去除途径,其在3种抗生素去除过程中所占相对贡献比例分别为75%、85%和62%。水解作用为土霉素和环丙沙星在湿地中去除的次要途径,其对两者去除的贡献比例分别为21%和19%;磺胺二甲基嘧啶的次要去除途径为微生物降解作用(23%),而水解作用贡献比例仅为13%。通过对比无传统污染物添加组别分析结果,研究发现传统污染物存在不会对抗生素吸附作用产生显著影响,但土霉素和环丙沙星水解去除途径的贡献度会分别降低7%和5%,微生物降解对磺胺二甲基嘧啶的去除作用比例会提升21%。Abstract: In this paper, with the conventional pollutants addition, adsorption was found out as the main removal pathway of oxytetracycline, ciprofloxacin and sulfamethazine in the constructed wetland, and its contribution rates of that were 75%, 85% and 62%, respectively. Hydrolysis was the secondary removal pathway of oxytetracycline and ciprofloxacin (21% and 19%), and biodegradation was the secondary removal pathway of sulfamethazine (23%). Compared to the treatment group without conventional pollutants addition, the effect of conventional pollutants on antibiotics adsorption was not significant, yet that could inhibit hydrolysis process of oxytetracycline and ciprofloxacin (about 7% and 5%), and conventional pollutants could enhance contribution of biodegradation for sulfamethazine (about 21%).
-
Key words:
- livestock wastewater /
- constructed wetland /
- hydrolysis /
- adsorption /
- biodegradation
-
ZHOU L J, YING G G, LIU S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444(2):183-195. 傅海霞, 刘怡, 董志英,等.抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 2016, 34(4):60-63,104. LIU L, LIU Y H, WANG Z, et al. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands[J]. Journal of Hazardous Materials, 2014, 278:304-310. 张鹏飞, 刘晓文, 李杰,等. 养殖废水中抗生素去除处理工艺的研究现状[J]. 净水技术, 2018, 37(4):60-65. 程宪伟, 梁银秀, 祝惠,等. 人工湿地处理水体中抗生素的研究进展[J]. 湿地科学, 2017, 15(1):128-134. ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. LIAO J, LIU C X, LIU L, et al. Influence of hydraulic retention time on behavior of antibiotics and antibiotic resistance genes in aerobic granular reactor treating biogas slurry[J]. Frontiers of Environmental Science & Engineering, 2019, 13(3):59-67. LIU L, LI J, FAN H Y, et al. Fate of antibiotics from swine wastewater in constructed wetlands with different flow configurations[J]. International Biodeterioration & Biodegradation, 2019, 140: 119-125. HIJOSA-VALSERO M, FINK G, SCHLVSENER M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719. DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: a review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9): 3468-3473. SONG X C, LIU D F, ZHANG G W, et al. Adsorption mechanisms and the effect of oxytetracycline on activated sludge[J]. Bioresource Technology, 2014, 151: 428-431. WU Q F, LI Z H, HONG H L, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite[J]. Applied Clay Science, 2010, 50(2): 204-211. CHENG D M, FENG Y, LIU Y W, et al. Quantitative models for predicting adsorption of oxytetracycline, ciprofloxacin and sulfamerazine to swine manures with contrasting properties[J]. Science of the Total Environment, 2018, 634: 1148-1156. LI J, ZHANG H, YUAN G D. Phosphate affects adsorption and desorption of oxytetracycline in the seawater-sediment systems[J]. Environmental Science and Pollution Research, 2018, 25(28): 28160-28168. ZHAO Y P, GU X Y, GAO S X, et al. Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects[J]. Geoderma, 2012, 183/184: 12-18. WATERMAN K C, ADAMI R C, ALSANTE K M, et al. Hydrolysis in pharmaceutical formulations[J]. Pharmaceutical Development and Technology, 2002, 7(2): 113-146. DOI A M, STOSKOPF M K. The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter[J]. Journal of Aquatic Animal Health, 2000, 12(3): 246-253. BIAŁK-BIELIŃSKA A, STOLTE S, MATZKE M, et al. Hydrolysis of sulphonamides in aqueous solutions[J]. Journal of Hazardous Materials, 2012, 221/222: 264-274. XUAN R C, ARISI L, WANG Q Q, et al. Hydrolysis and photolysis of oxytetracycline in aqueous solution[J]. Journal of Environmental Science and Health Part B, 2009, 45(1): 73-81. LIU L, LIU Y H, LIU C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53: 138-143. DETTENMAIER E M, DOUCETTE W J, BUGBEE B. Chemical hydrophobicity and uptake by plant roots[J]. Environmental Science & Technology, 2008, 43(2): 324-329. DALTON H, STIRLING D I. Co-metabolism[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1982, 297(1088): 481-496. TOYAMA T, FURUKAWA T, MAEDA N, et al. Accelerated biodegradation of pyrene and benzo [a] pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions[J]. Water Research, 2011, 45(4): 1629-1638. OLIVEIRA G H D, SANTOS-NETO A J, ZAIAT M. Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments[J]. Bioprocess and Biosystems Engineering, 2016, 39(1): 115-124.
点击查看大图
计量
- 文章访问数: 742
- HTML全文浏览量: 67
- PDF下载量: 12
- 被引次数: 0