EFFECT OF DECOMPOSITION OF HYDRRILLA VERTICILLATA ON PHOSPHORUS TRANSPORTATION AND TRANSFORMATION IN WATER-SEDIMENT-HYDRILLA VERTICILLATA SYSTEM
-
摘要: 在步入式模拟实验室内,通过控制温度、光照等措施模拟水-底泥-黑藻系统,设置对照组和30g黑藻组、60g黑藻组自然腐解,检测黑藻衰亡腐解期间黑藻生物量及水、底泥和黑藻中总磷及各形态磷含量的变化,从而探讨磷在该系统内的迁移转化。结果表明:黑藻腐解具有明显的阶段性,实验初期分解速率明显高于实验中后期。黑藻组DO总体变化趋势一致,均先下降再升高,pH值在实验期间整体变化不大,变化区间均为7.4~8.4。对照组与30 g黑藻组中ORP总体呈先上升再下降趋势,60 g黑藻组ORP呈先下降后上升趋势。在整个研究阶段,磷含量上升幅度排序为60 g黑藻组>30 g黑藻组>对照组。黑藻的腐解改变了系统中磷元素的循环,在腐解前期抑制底泥中磷的释放,腐解后期促进磷的释放,并对各形态磷的迁移转化有明显影响。Abstract: The water-sediment-Hydrilla verticillata system was simulated with several measures such as controlling temperature and light in the walk-in simulation laboratory. The control group and the 30g, 60g Hydrilla verticillata group were naturally decomposed, the variation of Hydrilla biomass and total phosphorus and various forms of phosphorus in the water were detected during the decay of Hydrilla verticillata, to discusss the transportation and transformation of phosphorus within the system. The results showed that the decomposition of Hydrilla verticillata had obvious stages, and the decomposition rate in the early stage of the experiment was significantly higher than that in the middle and late stage. During the experiment, the trend of DO change in the Hydrilla verticillata groups was first decreased and then increased with consistency, and the change interval of pH value was between 7.4 and 8.4, with little surges. In the control group and the 30 g Hydrilla verticillata group, the ORP showed a trend of increasing first and then decreasing. The ORP of the 60g kelp group decreased first and then increased. During the whole research period, the phosphorus contents of the groups were in the order of 60 g Hydrilla verticillata > 30 g > the control group. The decomposing of Hydrilla verticilla changed the circulation of phosphorus in the system, inhibited the release of phosphorus in the sediment in the early stage of decomposing, promoted the release of phosphorus in the late stage of decomposing, and had a significant effect on the migration and transformation of various forms of phosphorus.
-
Key words:
- Hydrilla verticillata /
- phosphorus /
- migration and transformation /
- submerged plant /
- sediment
-
LIU Y C. Research on the absorption mechanism of submerged macrophytes to phosphorous nutrients in water Body[J]. Journal of Anhui Agricultural Sciences, 2011. 张晓姣, 朱金格, 刘鑫. 浅水湖泊沉水植物调控技术研究进展[J].净水技术,2018,37(12):46-51. 毛丽娜, 王国祥, 张利民, 等. 黑藻群丛对水体氮素和其他主要环境因子日变化的影响[J]. 生态与农村环境学报, 2013, 29(6):811-815. GESSNER M O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hard water lake[J]. Aquatie Botany, 2000, 66(1):9-20. MARION L,PAILLISSON J M. A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake [J]. Aquatic Botany, 2003, 75(3):249-260. 杨飞, 姚佳, 张毅敏, 等. 温度对沉水植物腐解释放DOM及微生物群落多样性的影响[J].中国环境科学,2018,38(10):3904-3913. 王博,叶春,李春华,等.初春苦草腐解过程中营养盐释放过程及规律[J].生态与农村环境学报, 2012,28(2):171-175. 张来甲,叶春,李春华,等.沉水植物腐解对水体水质的影响[J].环境科学研究, 2013,26(2):145-151. CHEESMANA W, TUIRNER B L, INGLETT P W, et al. Phosphorus transformations during decomposition of wetland macrophytes[J]. Environmental Science & Technology, 2010, 44(24):9265-9271. 李春华, 叶春, 孔祥臻, 等. 浅水湖泊水生植物适宜生物量评估方法的探讨[J].中国环境科学, 2018, 38(12):4644-4652. 叶春, 王博, 李春华, 等. 沉水植物黑藻腐解过程中营养盐释放过程[J]. 中国环境科学, 2014, 34(10):2653-2659. CHRISTOPHER D K C,RUTH L. Revision of the genus Hydrilla(Hydrocharitaceae) [J].Aquatic Botany,1982,13: 485-504. PIETERSE A H. Hydrilla verticillata a review: abstracts ontropical agriculture[M]. Amsterdam: Royal Tropical Institute,1981,7: 9-34. 王博,叶春,杨劭.腐解黑藻生物量对高硝态氮水体氮素的影响[J].环境科学研究,2009,22(10): 1198-1203. YE C,YU H C,KONG H N,et al. Community collocation of four submerged macrophytes on two kinds of sediments in Lake Taihu,China[J].Ecological Engineering,2009,35(11):1656-1663. 林先贵.土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2009:39-60. 国家环境保护总局, 水和废水监测分析方法编委会.水和废水监测分析方法[M].4版. 北京:中国环境科学出版社, 2002. 龚莹,王宁,李玉成,等. 巢湖水体-沉积物磷形态与有效性[J]. 生态与农村环境学报, 2015,31(3):359-365. 尹军, 谭学军, 任南琪, 等.污泥电子传递体系(ETS)活性测定中萃取剂的选择[J].环境科学学报, 2004, 24(3): 413-418. BLENKINSOPP S A, LOCK M A. The measurement of electron transport system activity in river biofilms [J]. Water Research, 1990, 24(4): 441-445. JIN Y P, YANG X Y, CHEN G, et al. Improvement of INT-dehydrogenase activity detection method of activated sludge[J]. China Water & Wastewater, 2016. 153-156. 夏江宝,许景伟,陆兆华,等.黄河三角洲滩地不同植被类型的土壤贮水功能[J].水土保持学报,2009,23(5):79-83. 党宏忠,周泽福,赵雨森,等.祁连山水源涵养林土壤水文特征研究[J].林业科学研究,2006,19(1):39-44. WANG Y Y, CHEN F Z. Decomposition and phosphorous release from four different size fractions of Microcystis spp. taken from Lake Taihu, China[J]. Journal of Environmental Sciences,2008,20(7):891-896. REDDY I D, DANGELO E M. Biogeochemical indicator to evaluate pollutant removal efficiency in constructed wetlands[J]. Water Science and Technology, 1998,35:1-10. 张荣社, 李广贺, 周琪, 等. 潜流湿地中植物对脱氮除磷效果的影响中试研究[J]. 环境科学, 2005, 26(4): 83-86. 孙慧卿. 影响湖泊沉积物表层磷行为的关键因素研究[D]. 南京:南京林业大学, 2012. HERMO G, XI M N,GIRALDEZ L, et al. Relevance of the INT test response as an indicator of ETS activity in monitoring heterotrophic aerobic bacterial populations in activated sludges[J]. Water Research, 1998, 32(4):1213-1221. 厉恩华, 刘贵华, 李伟. 洪湖三种水生植物的分解速率及氮、磷动态[J].中国环境科学,2006,26(6):667-671. 汤志凯, 张毅敏, 杨飞, 等. 3种水生植物腐解过程中磷营养物质迁移、转化过程研究[J].环境科学学报, 2019,39(3):716-721. 李菲菲, 褚淑祎, 崔灵周, 等. 沉水植物生长和腐解对富营养化水体氮磷的影响机制研究进展[J]. 生态科学, 2018, 37(4): 225-230. 卢少勇,金相灿,余刚.人工湿地的磷去除机理[J].生态环境, 2006,15(2):391-396. WANG Z Q, ZHANG S H, ZHE-FENG X U. Forms of phosphorus in sediments from Hongze Lake[J]. Environmental Monitoring & Forewarning, 2011. ZHOU X, GUO H, ZHANG J, et al. Simulated study on phosphorus release from sediment in Changshou Lake influenced by environmental factors[J]. Chinese Journal of Environmental Engineering, 2013, 7(5):1671-1675.
点击查看大图
计量
- 文章访问数: 520
- HTML全文浏览量: 34
- PDF下载量: 12
- 被引次数: 0