DISTRIBUTION AND EMISSION CHARACTERISTICS, MIGRATION AND RELEASE REGULATION OF MERCURY IN A 600 MW COAL-FIRED POWER PLANT
-
摘要: 为全面表征某600 MW超低排放燃煤机组的Hg分布特征及迁移、释放规律,开展了现场实测研究。结果表明:煤中Hg含量的平均值为310 μg/kg,炉渣、粉煤灰、石膏、废水、烟气中Hg的分布系数分别为1.9%、37.5%、34.6%、0.8%、24.8%;整个烟气治理系统的总Hg脱除效率为74.7%,最终总Hg排放为6.0 μg/m3,SCR脱硝、烟气冷却器对Hg0转化效率分别达到44.2%、30.4%,低低温电除尘器几乎实现Hgp完全脱除,WFGD对Hg2+脱除效率达到80.7%;该电厂Hg一次释放量达到783 kg/a(其中,大气直排188 kg/a),二次释放量为334 kg/a。该成果可为燃煤电厂烟气Hg排放控制标准出台及控制技术的选择提供借鉴。Abstract: In order to characterize the Hg distribution characteristics, migration and its release rules of a 600MW unit ultra-low emission coal-fired power, field measurement research was conducted in this paper. The results showed that, the mean value of Hg content in coal was 310μg/kg, and the distribution coefficients of Hg in slag, fly ash, gypsum, waste water and flue gas were 1.9%, 37.5%, 34.6%, 0.8% and 24.8%, respectively. The removal efficiency of Hg in the whole flue gas treatment system was 74.7%, and final total Hg emission was 6.0 μg/m3. The conversion efficiency of SCR and flue gas cooler on Hg0 were 44.2% and 30.4%, respectively. The removal efficiency of HgP in LL-ESP was nearly 100%, and the removal efficiency of Hg2+ in WFGD was 80.7%. The primary release of Hg from the power plant was 783 kg/a (with atmospheric emission of 188 kg/a), and the secondary release was 334 kg/a. This paper could provide references for the release of Hg emission control standards and selection of control technologies for coal-fired power plants.
-
Key words:
- coal-fired power plant /
- ultra-low emission /
- Hg /
- distribution characteristics /
- migration rules /
- release rules
-
YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. LIU J M, ZHU F H, MA X Y. Industrial application of a deep purification technology for flue gas involving phase-transition agglomeration and dehumidification[J]. Engineering, 2018, 4(3): 416-420. CAO R J, TAN H Z, XIONG Y B, et al. Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator [J]. Journal of Cleaner Production, 2017, 161: 1459-1465. 王康,朱林,吴碧君,等. SO2对燃煤电厂选择催化还原脱硝催化剂性能的影响[J].科学技术与工程,2018,18(13): 323-327. 孙雪丽, 朱法华, 王圣, 等.燃煤电厂颗粒物超低排放技术路线选择[J].环境工程技术学报,2018,8(2): 129-136. 刘含笑,姚宇平,郦建国, 等. 低低温电除尘技术适用性及污染物减排特性研究[J]. 动力工程学报, 2018, 38(8):650-657. 周春霄,孙伊帆,蒋仁宝,等. 百叶窗对静电除尘器二次扬尘的抑制效应[J]. 科学技术与工程,2019,19(15): 365-371. 全中国电力企业联合会规划发展部.国电力工业统计快报(2017年)[R].[2019-04-15]. WANG S M, ZHANG Y S, GU Y Z, et al. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China [J]. Fuel, 2016,181: 1230-1237. ZHANG Y S, SHANG P F, WANG J W, et al. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants [J]. Fuel, 2017,208: 647-654. 杨爱勇, 严智操, 惠润堂, 等. 中国煤中汞的含量、分布与赋存状态研究[J].科学技术与工程,2015,15(32): 93-100. WU Q R, WANG S X, LI G L, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J]. Environmental Science & Technology, 2016,50(24): 13428-13435. LEE S H,RHIM Y J. Carbon-based novel sorbent for removing gas-phase mercury[J].Fuel,2006,85(2): 219-226. YAN R,LIANG D T,TSEN L,et al.Bench-scale experimental evaluation of carbon performance on mercury vapor adsorption[J].Fuel,2004,83(17/18): 2401-2409. SERRE S D,GULLETT B K,GHORISHI S B.Entrained-flow adsorption of mercury using activated carbon[J].Journal of the Air & Waste Management Association, 2001,51(5): 733-741. SJOSTROM S,EBNER T,LEY T,et al. Assessing sorbents for mercury control in coal-combustion flue gas[J].Journal of the Air & Waste Management Association,2002,52(8): 902-911. GHORISHI S B,KEENEY R M,SERRE S D, et al.Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury[J].Environmental Science & Technology,2002,36(20): 4454-4459. 陈义珍, 柴发合, 薛志钢, 等. 燃煤火电厂汞排放因子测试设计及案例分析[J]. 环境科学研究, 2006,19(2):49-52. 张军, 郑成航, 张涌新, 等. 某1000 MW燃煤机组超低排放电厂烟气污染物排放测试及其特性分析[J]. 中国电机工程学报, 2016,36(5):1310-1314. 赵毅,韩立鹏. 超低排放燃煤电厂低低温电除尘器协同脱汞研究[J]. 动力工程学报, 2019,39(4):319-323. 陈自祥,王儒威,孙若愚,等.淮南燃煤电厂汞分配、富集与释放通量[J].环境化学,2018,37(2): 193-199. 固定污染源废气总汞的测定冰浴吸收瓶采样-冷原子吸收分光光度法(征求意见稿):HJ 543[S]. LIU X L,WANG S X,ZHANG L,et al.Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China[J].Fuel,2013,111(9): 621-627. QUAN T,LIU G J,YAN Z C,et al. Distribution and fate of environmentally sensitive elements (arsenic,mercury,stibium and selenium) in coalfired power plants at Huainan,Anhui,China[J].Fuel,2012, 95(1): 334-339. 程泓,刘丙祥,冯新斌,等.典型燃煤电厂汞的分布、迁移及释放特征研究[J].地球与环境,2018,46(1): 43-49. BURMISTRZ P,KOGUT K,MARCZAK M,et al.Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission[J].Fuel Processing Technology,2016,152: 250-258. PARK K S,SEO Y C,LEE S J,et al.Emission and speciation of mercury from various combustion sources[J].Powder Technology,2008,180(1): 151-156. RICHARDSON C, MACHALEK T, MILLER S, et al. Effect of NOx control processes on mercury speciation in utility flue gas[J]. Journal of the Air & Waste Management Association, 2002, 52(8): 941-947. ZHANG Y, LAUMB J, LIGGETT R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10): 929-934. 刘玉坤, 禚玉群, 陈昌和, 等. 燃煤电站脱硫系统的脱汞性能[J]. 中国电力, 2011, 44(12): 68-72. 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M].北京:中国电力出版社,2015. 赵毅,韩立鹏. 660 MW超低排放燃煤电站汞分布特征研究[J].环境科学学报,2019,39(3):853-858 国家发展和改革委员会.中国资源综合利用年度报告(2014) [EB/OL].http://www.Sdpc.gov.cn/gzdt/201410/t20141009_628795.html[2014-10-09]. 梁红姬.燃煤飞灰中汞的赋存状态及其在热处理过程中释放特征的研究[D].广州:华南理工大学,2014. 刘青,石林.飞灰在热处理过程中汞的逸出特性[J].化工进展,2010,29(6): 1154-1158.
点击查看大图
计量
- 文章访问数: 110
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0