RESEARCH ON PHOTOVOLTAIC MODULES WASTE PREDICTION IN CHINA
-
摘要: 在采用威布尔分布模型分析光伏组件使用寿命分布情况的基础上,使用神经网络模型和市场供给A模型分别对中国光伏装机容量和组件报废量进行预测。将光伏组件按照不同质量分成2阶段,考虑不同退化情景预测组件报废量,并计算组件中有价值材料和金属报废量。预测结果表明:2025年后中国光伏组件报废量爆发,到2050年,中国光伏组件报废量最高可达60.22 GW,累计报废最高可达673 GW。在4种退化情景下,到2050年,典型贵金属方面最高产生3134.5 t的Ag;稀有金属方面最高产生228.1 t的Te;463.4 t的Cd,58.5 t的Ga,29.8 t的In;有毒有害金属方面最高产生263.9 t的Pb;Si最高产生量43735.4 t。到2050年,光伏组件材料累积废弃总量最高可达64623193.6 t。Abstract: This study used the Weibull distribution model to analyze China's photovoltaics. Then the neural network model and the market supply A model were used to predict the installed capacity of PV and the amount of modules waste in China. In this paper, we divided PV modules into two phases according to different quality, and considered the four degradation scenarios to predict component scrap. Then we calculated the valuable materials and metal scrap in the components. The results showed that China's PV module will scrap out after 2025. In 2050, China's PV module will scrap up to 60.22 GW, and the accumulative quantity up to 673 GW. In four degradation scenariost, by 2050, typical precious metals will produce up to 3134.5 tons of Ag; the highest yield of rare metals will include 228.1 tons of Te, 463.4 tons of Cd, 58.5 tons of Ga, 29.8 tons of In; for toxic and harmful metals, 263.9 tons of Pb will be produced; and a maximum of 43735.4 tons of Si will be produce. By 2050, the cumulative total waste of PV module materials will reach the peak of 64423193.6 tons.
-
Key words:
- photovoltaic module /
- waste prediction /
- weibull distribution /
- neural network
-
赵玉文,吴达成,王斯成,等.中国光伏产业发展研究报告(2006—2007)[J].太阳能,2008(8):6-13. 中国光伏行业协会. 2017—2018年中国光伏产业年度报告[R].2018.5. 国家能源局.2018年光伏发电统计信息[EB/OL].2019-3-19.http://www.nea.gov.cn/2019-03/19/c_137907428.htm. MCDONALD N C, PEARCE J M. Producer responsibility and recycling solar photovoltaic modules[J]. Energy Policy, 2010, 38(11):7041-7047. 2012/19/EU. Waste Electrical and Electronic Equipment (WEEE) Directive [S]. PAIANO A. Photovoltaic waste assessment in Italy[J]. Renewable and Sustainable Energy Reviews, 2015, 41:99-112. SANTOS J D, ALONSO-GARCÍA M C. Projection of the photovoltaic waste in Spain until 2050[J]. Journal of Cleaner Production, 2018, 196:1613-1628. DOMÍNGUEZ A, GEYER R. Photovoltaic waste assessment in Mexico[J]. Resources Conservation & Recycling, 2017, 127:29-41. DOMÍNGUEZ A, ROLAND G. Photovoltaic waste assessment of major photovoltaic installations in the United States of America[J]. Renewable Energy, 2019,133:1188-1200. W S, D N, C M. Waste from electrical and electronic equipment[J]. Washington DC, US, Environmental Protection Agency, 2001:95-96. 刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用[M]. 7版. 北京:科学出版社,2017:182-187. YU J L, WIUIAMS E, JUM T, et al. Forecasting global generation of obsolete personal computers[J]. Environmental Science and Technology, 2010,44(9):3232-3237. YANG Y, ZHANG J, FENG W Z. A prediction on electronic waste resource with time series model[C]//Computer Application and System Modeling (ICCASM),2010 International Conference.2010. LIAO Q Y. Construction Waste Output Forecast and Analysis Based on Gray Prediction Method in Urban Chongqing[A]. Advanced Science and Industry Research Center. Proceedings of 2014 International Conference on Energy, Environment and Materials Engineering(EEME 2014)[C].Advanced Science and Industry Research Center: Science and Engineering Research Center,2014:7. 宋广翰, 孟雯, 宋庆彬, 等. 我国打印机废弃量估算研究[J]. 环境工程, 2016,34(7):129-133. 蒋仁言.威布尔模型族:特性、参数估计及应用[M].北京:科学出版社,1998. KESHAV PARAJULY, KOMAL HABIB, GANG L G. Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management[J]. Resources, Conservation & Recycling,2017,123:85-92. 郭学益,张婧熙,严康,等.中国废旧电脑产生量及其金属存量分析研究[J].中国环境科学,2017,37(9):3464-3472. KUITCHE, JOSEPH M. Statistical Lifetime Prediction for Photovoltaic Modules[EB/OL]. http://www1.eere.energy.gov/solar/pdfs/pvrw2010.2010 王喜炜,白建波,宋昊,等.光伏组件加速老化试验可靠性及其寿命分布研究[J].可再生能源,2017,35(5):675-680. PILAR ESPINET-GONZÁLEZ, ALGORA C, NEFTALÍ NU'ÑEZ, et al. Evaluation of the reliability of commercial concentrator triple-junction solar cells by means of accelerated life tests (ALT)[C]//American Institute of Physics, 2013. KUMAR S, SARKARA B. Design for reliability with Weibull analysis for photovoltaic modules[J]. International Journal of Current Engineering and Technology, 2013,3(1):129-134. 董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2015:66-104. 王世江,江华,金艳梅,等.中国光伏产业发展路线图(2017年版)[M]. 北京:中国光伏行业协会,2018. 王世江.当代多晶硅产业发展概论[M].北京:人民邮电出版社,2015:13-17. USEPA. Regulatory Information by Topic: Toxics Substances[EB/OL]. https://www.epa.gov.2016. Ad-hoc Working Group, European Commission. Critical Raw Materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials, Technical Report[EB/OL]. http://ec.europa.eu.2010. U.S. Department of Energy(DOE). Critical Material Strategy[EB/OL]. http://www.doc88.com/p-9029715669697.html 2010-12. 余荣斌. 基于性能退化的光伏组件服役可靠性评估方法研究[D].广州:华南理工大学,2016. 吕瑞瑞,张增明,彭丽霞,等.一种光伏背板寿命推算的研究[J].合成材料老化与应用,2012,41(1):20-23. International Energy Agency. International renewable energy agency[R]//End-of-Life Management. Solar Photovoltaic Panels, T12-06: 2016,2016.
点击查看大图
计量
- 文章访问数: 375
- HTML全文浏览量: 51
- PDF下载量: 6
- 被引次数: 0