ANALYSIS ON ADSORPTION PROPERTIES OF U(Ⅵ) BY DIFFERENT SOIL COMPONENTS IN PADDY SOIL AROUND A URANIUM TAILINGS POND
-
摘要: 通过斯笃克定律提取土壤胶体,连续提取法吸附土壤中的有机质,得到土壤矿质胶体,采用比表面积(BET)法和Zeta电位对原土、土壤胶体和矿质胶体进行了表征分析,考察了溶液pH、接触时间、U(Ⅵ)初始浓度以及温度等因素对3种样品吸附溶液中U(Ⅵ)的影响性能。结果表明:原土、土壤胶体和矿质胶体的比表面积和平均孔径分别为11.5,31.1,28.8 m2/g和18.76,35.55,17.5 nm。在pH为5.5,固液比在1.0 g/L,温度为20 ℃,U(Ⅵ)初始浓度为10.0 mg/L,土壤、土壤胶体反应时间为50 min,矿质胶体反应时间为40 min时,原土、土壤胶体、矿质胶体的对U(Ⅵ)吸附率分别达到76.67%、83.03%、48.87%,吸附容量分别达到8.53,9.24,5.43 mg/g。对比研究结果可以看出,土壤中的胶体对溶液中U(Ⅵ)有着明显的吸附能力,该研究结果对进一步研究含U(Ⅵ)废水的处理及U(Ⅵ)在土壤和地下水中的迁移过程有一定的参考意义。Abstract: The soil colloid was extracted by Stoke’s law and the organic matter in the soil was removed by continuous extraction method to obtain mineral colloid. The original soil, soil colloid and mineral colloid were characterized by specific surface area (BET) method and Zeta potential determination. The effects of solution pH, reaction time, initial concentration of U(Ⅵ) and temperature on adsorption of U(Ⅵ) by the three samples were investigated. The results showed that the specific surface area and average pore diameter of the original soil, soil colloid and mineral colloid were 11.5, 31.1, 28.8 m2/g and 18.76, 35.55, 17.5 nm, respectively. When pH was 5.5, the solid-liquid ratio was 1.0 g/L, the temperature was 20 ℃, the initial concentration of U(Ⅵ) was 10.0 mg/L, the reaction time of soil and soil colloid was 50 min and the reaction time of mineral colloid was 40 min, the removal rates of original soil, soil colloid and mineral colloid reached 76.67%, 83.03% and 48.87%, respectively, and the adsorption capacities reached 8.53, 9.24, 5.43 mg/g, respectively. The colloid in soil had obvious adsorption ability on U(Ⅵ) in solution. It had certain reference significance for studying on the treatment of containing U(Ⅵ) wastewater and the migration process of U(Ⅵ) in soil and groundwater.
-
Key words:
- soil colloid /
- mineral colloid /
- uranium /
- adsorption /
- specific surface area /
- Zeta potential
-
郭栋清,李静,张利波,等. 核工业含铀废水处理技术进展[J].工业水处理,2019,39(1):14-20. 董文明,杜金州,陶祖贻. 核素迁移与胶体[J].原子能科学技术,2000,34(1):93-97. 曹存存,吕俊文,夏良树,等. 土壤胶体对渗滤液中铀(Ⅵ)迁移影响的研究进展[J].核化学与放射化学,2012,34(1):1-7. 蒋经乾,劳玉军,王理,等. 铀矿山尾矿库区浅层尾砂中核素的垂直分布特征[J].环境化学,2015,34(8):1561-1563. 闫金龙,吴文丽,江韬,等. 土壤组分对磷形态和磷吸附-解吸的影响:基于三峡库区消落带落干期土壤[J].中国环境科学,2019,39(3):1124-1131. 朱丽珺.不同林分类型土壤及主要组分对重金属吸附特征研究[D].南京:南京林业大学,2007. 周皓.地下水中胶体形成机理及对污染物迁移的影响[J].西部探矿工程,2008,20(11):68-72. ZHOU D M, WANG D T, CANG L, et al. Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength [J]. Journal of Soils and Sediments, 2011, 11(3):491-503. ARAMRAK S, FLURY M, HARSH J B, et al. Colloid mobilization and transport during capillary fringe fluctuations [J]. Environmental Science & Technology, 2014, 48(13):7272-7279. BARTON C D, KARATHANASIS A D. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths [J]. Water Air & Soil Pollution, 2003, 143(1/2/3/4):3-21. 刘冠男,刘新会.土壤胶体对重金属运移行为的影响[J].环境化学,2013,32(7):1308-1317. 方良,周书葵,刘迎九,等. 铀尾矿库地下水污染风险评价方法研究[J]. 环境工程, 2016, 34(1):100-102. 温华. 三峡水库消落区土壤矿质胶体对镉的吸持特征与胶体-镉复合迁移研究[D].重庆:西南农业大学,2005. 王明铭, 丁爱中, 郑蕾,等. 沉积物金属迁移-转化的影响因素及其规律[J]. 环境工程, 2016, 34(11):150-154. 王丰雨.优先流作用下的胶体-Pb的复合共迁移研究[J]. 环境污染与防治, 2010, 32(7):66-70. HE Y, LI B B, ZHANG K N, et al. Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond[J]. Environmental pollution (Barking, Essex: 1987),2019,252(Pt B):1010-1018. KANMANI S, GANDHIMATHI R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site[J]. Applied Water Science, 2013, 3(1):193-205. 中国林业科学研究院. 森林土壤粘粒的提取:GB 7872—1987[S]. 北京:中国标准出版社,1987. 牟树森, 青长乐.环境土壤学[M]. 北京:中国农业出版社,1993. 熊毅.土壤胶体,第一册[M]. 北京:科学出版社,1983. 赵振国.吸附作用应用原理[M]. 北京:化学工业出版社,2005. Asmadi, Aldi, Kendrick, John, Leusen, Frank J J. Physical Chemistry Chemical Physics[M]. London: Royal Society of Chemistry, 2010.78-85. 杜浪,李玉香,马雪,等. 偶氮胂Ⅲ分光光度法测定微量铀[J]. 冶金分析, 2015, 35(1):68-71. 何余生,李忠,奚红霞,等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4):376-384. 近藤精一,石川达雄,安部郁夫.吸附科学[M]. 李国希,译. 北京:化学工业出版社,2005:41-48. HILL T L. Theory of Multimolecular Adsorption from a Mixture of Gases[J]. The Journal of Chemical Physics, 2004, 14(4):268-275. SARA F, MARTINA C, VERONICA P, et al. Zeta potential measurements on solid surfaces for in vitro biomaterials testing: surface charge, reactivity upon contact with fluids and protein absorption[J]. Frontiers in Bioengineering and Biotechnology, 2018, 60(6):1-7. BASHIR S, RIZWAN M S, SALAM A, et al. Cadmium immobilization potential of rice straw-derived biochar, zeolite and rock phosphate: extraction techniques and adsorption mechanism[J]. Bulletin of Environmental Contamination and Toxicology, 2018,25(3):26-32. JOHN N, ARNEPALLI D N. Factors Influencing Zeta Potential of Clayey Soils[M]. Berlin: Geotechnical Characterisation and Geoenvironmental Engineering, 2019. 于天仁.土壤化学原理[M].北京:科学出版社,1987. PIERRE A C, MA K. DLVO theory and clay aggregate architectures formed with AlCl3[J]. Journal of the European Ceramic Society, 1999, 19(8):1615-1622. YU Y X, MA L Q, XU H X, et al. DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations[J]. Powder Technology, 2018, 330:147-151. 李小燕.溶液中U(Ⅵ)、Th(Ⅳ)吸附材料的制备及吸附性能和机理研究[M]. 北京:中国原子能出版社,2014. 熊正为, 王清良, 郭成林. 蒙脱石吸附铀机理实验研究[J]. 湖南师范大学自然科学学报, 2007, 30(3):75-79. 陆雅海, 黄昌勇, 袁可能,等. 砖红壤及其矿物表面对重金属离子的专性吸附研究[J]. 土壤学报, 1995(4):370-376. 张亚萍,谢水波,杨金辉,等.腐殖酸吸附水中铀的特性与机理[J].安全与环境学报,2012,12(4):66-71.
点击查看大图
计量
- 文章访问数: 103
- HTML全文浏览量: 17
- PDF下载量: 0
- 被引次数: 0