EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER
-
摘要: 过热蒸汽法再生活性炭的过程中会产生大量含难降解有机物的冷凝废水,为去除冷凝废水中难降解COD,提高可生化性,采用紫外/臭氧活化过硫酸盐(UV/O3-Na2S2O8)氧化体系对活性炭再生冷凝废水进行处理,考察了O3投加量、初始pH和Na2S2O8投加量等因素对有机物处理效能的影响,并采用红外光谱、紫外-可见光谱和三维荧光等表征手段探究了冷凝废水处理过程中的变化机理。结果表明:当O3投加量为30 mg/L,pH值为9.0,Na2S2O8投加量为0.4 g/L时,在120 min内对冷凝废水的COD去除率达到82.1%,色度(CN)去除率达到86.3%。冷凝废水可生化性得到提高,BOD5/COD值由0.17提升至0.46。由冷凝废水溶解性有机物(DOM)的表征可知,DOM中的腐殖质和发色基团被持续氧化,芳构化程度降低,色氨酸类有机物得到有效去除。结论表明,UV/O3-Na2S2O8氧化体系可有效去除冷凝废水中的难降解有机物。Abstract: During the regeneration of activated carbon by superheated steam method, a large amount of condensed wastewater containing refractory organics will be produced. In order to remove the refractory COD in the condensed wastewater, improve the biodegradability and facilitate the subsequent biodegradation, UV/ozone activated persulfate(UV/O3-Na2S2O8) oxidation system was used to treat the activated carbon regeneration condensate wastewater. The effects of ozone dosage, initial pH and Na2S2O8 dosage on the treatment efficiency of the organics were investigated. The changes in the treatment process of the condensate wastewater were investigated by means of infrared spectrum, UV-Vis spectrum and three-dimensional fluorescence. The results showed that when the dosage of ozone was 30 mg/L, pH was 9.0, and Na2S2O8 dosage was 0.4 g/L, the removal rate of COD and chroma(CN) was 82.1% and 86.3%, respectively. The biodegradability of condensed wastewater was improved, and the BOD5/COD value was increased from 0.17 to 0.46. It could be found from the characterization of dissolved organic matter(DOM) in condensed wastewater that humus and chromophore in DOM were oxidized continuously, and the aromatization degree was reduced. Tryptophan organics were effectively removed. The results showed that UV/O3-Na2S2O8 oxidation system could effectively remove the organics in the condensed wastewater.
-
Key words:
- UV/ozone activation /
- persulfate /
- condensate wastewater /
- processing efficiency /
- degradation mechanism
-
孙钰林, 丁然, 高迎新, 等. 工业园区废水深度处理的活性炭吸附-混凝技术中试研究[J]. 给水排水, 2018, 54(1):85-90. 姜贵清, 裴翠珍, 张磊, 等. 蒸发浓缩-光芬顿氧化法处理炼油厂废碱水的研究[J]. 工业用水与废水, 2018, 49(6):29-32. LI Z P, LIU F, YOU H, et al. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor[J]. Water Science & Technology, 2018, 77(7/8):1931-1941. PAN X X, CHEN J, WU N N, et al. Degradation of aqueous 2,4,4'-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products[J]. Water Research, 2018, 143:176-187. KATTEL E, DULOVA N, VIISIMAA M, et al. Treatment of high-strength wastewater by Fe2+-activated persulfate and hydrogen peroxide[J]. Environmental Technology, 2016, 37(3):352-359. SOUBH A, MOKHTARANI N. The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes[J]. RSC Advances, 2016, 6:6113-6122. TIZAOUI C, BOUSELMI L, MANSOURI L, et al. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems[J]. Journal of Hazardous Materials, 2007, 140(1/2):316-324. AMR S S A, HAMIDI A A, MOHD N A. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process[J]. Waste Management, 2013, 33(6):1434-1441. LIANG J, BING C, DIYA W, et al. The removal of COD and NH3-N from atrazine production wastewater treatment using UV/O3:experimental investigation and kinetic modeling[J]. Environmental Science and Pollution Research, 2017, 25(4):2691-2701. FURMAN O S, TEEL A L, AHMAD M, et al. Effect of basicity on persulfate reactivity[J]. Journal of Environmental Engineering, 2011, 137(4):241-247. VANESSA R U, MILENA G M, MONTSERRAT P, et al. Influence of pH and ozone dose on sulfaquinoxaline ozonation[J]. Journal of Environmental Management, 2016, 195(2):224-231. 程江, 张晖, 杨卓如, 等. 臭氧吸收中液相臭氧浓度和增强因子理论预测[J]. 化工学报, 1997, 48(6):698-705. KURUKUTLA A B, KUMAR P S S, ANANDAN S, et al. Sonochemical degradation of Rhodamine B using oxidants, hydrogen peroxide/peroxydisulfate/peroxymonosulfate, with Fe2+ ion:proposed pathway and kinetics[J]. Environmental Engineering Science, 2015, 32(2):129-140. 李才华, 姜枫, 邹秋爽, 等. 臭氧-过硫酸盐工艺深度处理垃圾焚烧渗沥液[J]. 环境工程学报, 2017, 11(4):2233-2240. 邹吕熙, 李怀波, 郑凯凯, 等. 太湖流域城镇污水处理厂进水水质特征分析[J]. 给水排水, 2019, 55(7):39-45. 陈炜鸣, 张爱平, 李民, 等. O3/H2O2降解垃圾渗滤液浓缩液的氧化特性及光谱解析[J]. 中国环境科学, 2017, 37(6):2160-2172. 杨岸明, 常江, 甘一萍, 等. 臭氧氧化二级出水有机物可生化性研究[J]. 环境科学, 2010, 31(2):363-367. SCANDELAI A P J, RIGOBELLO E S, OLIVEIRA B L, et al. Identification of organic compounds in landfill leachate treated by advanced oxidation processes[J]. Environmental Technology, 2017, 40(6):730-741. 程亮, 张保林, 徐丽, 等. 腐殖酸热分解动力学[J]. 化工学报, 2014, 65(9):3470-3478. BALACHANDRAN V, REVATHI B, RAJA B, et al. Vibrational (FT-IR and FT-Raman) spectra and quantum chemical studies on the molecular structure of p-hydroxy-N-(p-methoxy benylidene) anline[J]. Indian Journal of Pure and Applied Physics, 2017, 55(1):43-59. FRANCISCO J, SCHLENGER P, MARIA G. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and 1H NMR techniques[J]. Science of the Total Environment, 2016, 541:623-637. QIANG Z M, LIU C, DONG B Z, et al. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation[J]. Chemosphere, 2010, 78(5):517-526. PARK M, SNYDER S A. Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM)[J]. Chemosphere, 2018, 193:530-537. XI B D, HE X S, DANG Q L, et al. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting[J]. Bioresource Technology, 2015, 196:399-405. 期刊类型引用(29)
1. 李金,仇璐,刘锐,李军,李瀚屹,颜兵,何江,梁贤金,易彪. 垃圾渗滤液处理系统方案评价模型研究. 工业水处理. 2025(03): 121-128 . 百度学术
2. 常雨芳,胡宇博,余文锦,周菲菲,黄文聪. 垃圾渗滤液污水处理设备的臭氧投加复合抗扰控制. 控制工程. 2024(03): 385-391 . 百度学术
3. 何京钟,孙竟,刘羿,柴玉峰,彭春. 多级A/O-MBR工艺在垃圾渗滤液应急处理中的应用. 中国给水排水. 2024(06): 79-86 . 百度学术
4. 李明德. 某城市生活垃圾焚烧电厂渗滤液处理工程实例. 绿色科技. 2024(04): 209-213 . 百度学术
5. 许明俊,向赠烨. 生活垃圾焚烧发电厂垃圾渗滤液与餐厨废水协同处理设计及应用. 广东化工. 2024(09): 142-145 . 百度学术
6. 龚晓露,王俊杰. 溶解氧和碳源对填埋污泥脱水液脱氮效果的影响. 环境科学与技术. 2024(S2): 147-151 . 百度学术
7. 陈斌,韩粒,黄金琼. 生活垃圾焚烧发电厂垃圾渗滤液高回收率设计及应用. 广东化工. 2023(11): 141-143 . 百度学术
8. 张燕燕,郑志宏,刘红亮,付曼琴,李蕾,彭绪亚. 中国垃圾渗滤液产生现状及处理展望. 重庆大学学报. 2023(06): 76-88 . 百度学术
9. 陈客步. 徐州市生活垃圾填埋场地块修复方案. 能源技术与管理. 2023(06): 142-144+155 . 百度学术
10. 左壮,程李秋,张琛玥,王元月,杨晓冬,袁硕. 污泥热水解厌氧消化液处理技术进展. 给水排水. 2023(S2): 166-176 . 百度学术
11. 王海棠. 氨吹脱结晶在垃圾渗滤液处理中的工程研究. 现代化工. 2022(02): 15-18 . 百度学术
12. 冯建武,汤红妍,浮锟,崔一鸣. Fenton预处理对渗滤液中有机成份的影响研究. 广州化工. 2022(09): 60-63 . 百度学术
13. 牧兰. 探究新时期垃圾渗滤液浓缩液处理技术. 皮革制作与环保科技. 2022(17): 95-97 . 百度学术
14. 刘滨,刘伟,刘定文. 基于电导率控制的污水渗滤液处理方法研究. 环境科学与管理. 2021(01): 77-81 . 百度学术
15. 陶海祥,毛兵,江海云,吴小亮. Ru/TiO_2湿式催化氧化降解垃圾渗滤液膜浓缩液. 工业水处理. 2021(09): 111-116 . 百度学术
16. 肖羽堂,吴晓慧,王冠平,石伟,孙临泉,陈艳芳. 垃圾渗滤液高级氧化及其组合工艺深度处理研究进展. 水处理技术. 2020(02): 8-12 . 百度学术
17. 吴晓慧,肖羽堂,孙临泉,陈艳芳,缪爱纯,王冠平,石伟. 臭氧催化氧化耦合MBR深度处理垃圾渗滤液试验. 工业水处理. 2020(03): 78-80+84 . 百度学术
18. 王慧雅. g-C_3N_4/TiO_2/PVDF复合膜构建的MBR+双膜法在垃圾渗滤液深度处理中的应用研究. 现代化工. 2020(05): 159-164 . 百度学术
19. 仇庆春,高碧霄,潘杨,王静. 苏州某垃圾渗滤液处理工艺优化与实践. 苏州科技大学学报(工程技术版). 2020(01): 45-49 . 百度学术
20. 杨姝君,张辰,贺骏,熊建英,李雪亭,黄孝文. 垃圾渗滤液“纳滤+纳滤浓缩液3级减量”技术的工程应用. 环境工程. 2020(06): 81-87+114 . 本站查看
21. 刘建伟,康心悦,岳鹏,陈雪威,田洪钰. 城市生活垃圾综合处理厂渗滤液全量化处理工程设计. 中国给水排水. 2020(10): 70-75 . 百度学术
22. 戚二兵,黄亚继,袁琦,胡华军,樊聪慧,曹彦彦,丁守一. 石灰混凝-浸没蒸发协同处理垃圾渗滤液纳滤膜浓缩液. 环境工程. 2020(12): 54-58+77 . 本站查看
23. 施燕,张万筠,杨婉玲,李晶,林岩,尹南竹. 垃圾渗滤液污染物含量及分布规律研究. 辽宁化工. 2019(03): 201-204 . 百度学术
24. 郑忆枫. 垃圾渗滤液处理难点与应对方式研究. 环境与发展. 2019(03): 69-70 . 百度学术
25. 张超,尚润东,刘宇璇,杨国庆,李璐,施磊,靳永胜. 菌株SDB1-2的筛选及其对垃圾渗滤液处理的应用. 北京农学院学报. 2019(02): 1-4 . 百度学术
26. 万金保,余晓玲,吴永明,邓觅. UASB-氨吹脱-氧化沟-反渗透处理垃圾渗滤液. 水处理技术. 2019(05): 135-138 . 百度学术
27. 胡云飞,裴建川,马勤,王洁屏. 短程硝化在垃圾渗滤液处理工程中的应用. 环境工程学报. 2019(06): 1463-1472 . 百度学术
28. 柴健. 氨吹脱+外置式MBR+DTRO工艺处理垃圾渗滤液工程应用. 水处理技术. 2019(09): 137-140 . 百度学术
29. 张晓杰. 厌氧+MBR+NF+RO工艺与两级DTRO工艺处理垃圾渗滤液的对比分析. 水处理技术. 2019(09): 126-129+132 . 百度学术
其他类型引用(24)
-

计量
- 文章访问数: 210
- HTML全文浏览量: 18
- PDF下载量: 2
- 被引次数: 53