A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS
-
摘要: 进水污染物浓度低及比例失调是目前许多城镇污水处理厂面临的问题,然而鲜有关于渗漏来源及定量分析的相关文献报道。为定量分析河水、地下水、雨水、管道中污染物降解等因素对污水浓度降低的影响,通过水量平衡三角法,并结合典型位点的24 h采样测试分析及S-P降解模型,对目标城镇污水处理厂进水组成进行分析。历史水量数据结合降雨情况分析表明,该污水处理厂进水中实际原生污水量仅为60.0%左右,其余40.0%左右为地下水及河水渗入量或雨水混入量。在连续晴天无降雨的情况下,小区自建管网和市政排水管网是主要的渗漏源,其对于进水有机物浓度降低的贡献分别为20.2%和26.4%。此外,在25 mm降雨量情况下,小区自建管网是主要的渗漏源,对于进水浓度降低的贡献达到39.5%。因此在污水处理提质增效工作中,小区自建管网的完善程度应引起关注。Abstract: At present, many urban wastewater treatment plants are facing the problems of low concentration and imbalance of influent pollutants. However, there are few reports on the source and quantitative analysis of leakage. In order to quantitatively analyze the influence of river water (groundwater), rainwater and pollutant degradation in pipeline on the reduction of wastewater pollutants' concentration, wastewater source of the target wastewater treatment plant was analyzed by the method of water balance trigonometry, conbined with analysis of wastewater in typical sites and the S-P degradation model. The results showed that historical water volume data combined with rainfall analysis indicated that the actual amount of primary sewage in the influent of the WWTP was only about 60.0%, and the remaining 40.0% was groundwater and river water infiltration or rainwater infiltration. The pipe network of residential quarters and municipal drainage pipe network were the main leakage sources in the sunny days, and their contribution to the reduction of inflow concentration were 20.2% and 26.4%, respectively. In addition, the pipe network of residential quarters was the main leakage source, which contributed 39.5% to the decrease of the influent concentration under 25 mm rainfall events. Therefore, attention should be paid to the completeness of residential quarters' pipe network in the process of improving the quality and efficiency of wastewater treatment.
-
Key words:
- wastewater treatment plant /
- wastewater pipe network /
- leakage /
- rainwater
-
胡春明.雨污分流,还是"同流合污"?[J].广西城镇建设,2009(4):41-43. 翁晟琳,李一平,卢绪川,等.台州市生活污水处理厂设计水量中雨水混入比例研究[J].水资源保护,2017,33(4):75-79,94. BÉNÉDITTIS DE J, BERTRAND-KRAJEWSKI J L. Infiltration in sewer systems:comparison of measurement methods[J]. Water Science and Technology, 2005, 52(3):219-227. SCHULZ N, BAUR R, KREBS P. Integrated modelling for the evaluation of infiltration effects[J]. Water Science and Technology, 2005, 52(5):215-223. 徐振宇,李大海.秦皇岛市污水处理厂运行现状与存在问题的对策[J].黑龙江水利科技, 2014, 42(10):233-234. 李津.浅谈污水管网的存在问题及对策:以厦门市某污水处理厂污水管网为例[J].企业技术开发, 2013, 32(14):160-161. BÉNÉDITTIS DE J, BERTRAND-KRAJEWSKI J L. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes[J]. Water Science and Technology, 2005, 52(3):229-237. HOUHOU J, LARTIGES B S, FRANCE-LANORD C, et al. Isotopic tracing of clear water sources in an urban sewer:a combined water and dissolved sulfate stable isotope approach[J]. Water Research, 2010, 44(1):256-266. KRACHT O, GUJER W. Quantification of infiltration into sewers based on time series of pollutant loads[J]. Water Science and Technology, 2005, 52(3):209-218. 薛梅,周柯锦,郭一令,等. 下水道中不明水的调查及防治对策[J]. 中国给水排水, 2006, 22(17):53-56. WEISS G, BROMBACH H, HALLER B. Infiltration and inflow in combined sewer systems:long-term analysis[J]. Water Science and Technology, 2002, 45(7):11-19. 徐智廷, 李河海. S-P概化模型在临沂水功能区纳污能力分析中的应用[J]. 水资源保护, 2007, 23(3):31-33. 国家环境保护总局. 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. 刘晋, 蒋岚岚, 陈秋萍, 等. 地下水导排法在无锡某下沉广场的设计应用[J]. 中国给水排水, 2012, 28(20):98-100. 樊杰, 胡晗. 化学铁盐辅助除磷对生物除磷的影响研究[J]. 环境科学与技术, 2013, 36(2):41-45. CHAI C Y, ZHANG D W, YU Y L, et al. Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China[J]. Water, 2015, 7(3):918-938. 期刊类型引用(18)
1. 林勇,甘润杰,韦国相. 基于流量监测和水质分析的城市污水管网外水入渗溯源研究. 中国资源综合利用. 2025(02): 263-265 . 百度学术
2. 凌莉,李亮,张红艳. 污水厂低浓度进水问题分析. 中国市政工程. 2024(01): 60-64+154-155 . 百度学术
3. 王哲,常素云,王松庆,王云仓. 污水处理厂进水BOD_5浓度影响因素分析. 资源节约与环保. 2024(02): 114-118 . 百度学术
4. 刘宏志. 徐州市污水处理厂进水浓度低原因及对策探究. 山西建筑. 2024(13): 155-157 . 百度学术
5. 刘红希. 海绵城市雨污分流管线设计研究. 水与水技术. 2024(00): 218-221 . 百度学术
6. 王凯,刘广兵,岳强,李秋红. 不同降雨规模对城镇污水处理厂进水水质水量影响分析. 给水排水. 2024(08): 57-63 . 百度学术
7. 李哲,檀继猛,马相岭,朱明水,高裕明. 城市排水系统“两清零一提标”中的现状与对策研究. 给水排水. 2024(S1): 553-561 . 百度学术
8. 马燕飞. 可持续发展视域下海绵城市雨污分流处理措施研究. 环境科学与管理. 2023(03): 163-168 . 百度学术
9. 蔡乾凌,袁园,章亮,吴倩影,张田,徐祥. 沿江某城市建成区污水处理系统问题分析及对策研究. 中国给水排水. 2023(18): 9-14 . 百度学术
10. 陆文林,钱铎怀,黄浩辉,梁志明. 东莞市水乡片区污水管网外水入侵排查及整治对策研究. 给水排水. 2023(S1): 433-438 . 百度学术
11. 杨书月,林学敏,林南盛. 通过水质监测快速判断城镇污水管网破损位置的案例分析. 清洗世界. 2022(02): 140-142+147 . 百度学术
12. 李一平,郑可,周玉璇,唐春燕,陈霞,伍彬,李金华,温慧峰,蒋海砖. 南方城市污水处理系统效能评估与提质增效策略制定. 水资源保护. 2022(03): 50-57 . 百度学术
13. 刘文强,郁达伟,郑利兵,朱利英,桂双林,易其臻,李昆,舒琴,郑江,甘正明,魏源送. 南昌某城市污水处理厂进水浓度低成因分析研究. 环境科学学报. 2022(09): 141-150 . 百度学术
14. 贾蒙蒙,徐旭,任天奇,刘月,赵嫱,彭程. BMR反应器与絮凝技术在雨水泵站排水应急设施工程中的应用. 净水技术. 2021(05): 124-130 . 百度学术
15. 赵菲. 地下水采样方法探讨. 现代农业科技. 2021(10): 146-148 . 百度学术
16. 陈华. 排水工程高质量发展的主要瓶颈问题分析和对策探讨——以上海市为例. 净水技术. 2021(S1): 276-282 . 百度学术
17. 周乙新,李激,王燕,郑凯凯,王小飞,支尧. 城镇污水处理厂低浓度进水原因分析及提升措施. 环境工程. 2021(12): 25-30 . 本站查看
18. 牛越,高燚,王迪迪,张景炳,陈加波,王洪臣. 青岛市团岛排水系统污水水质水量波动特征解析. 环境工程. 2021(12): 18-24 . 本站查看
其他类型引用(6)
-

计量
- 文章访问数: 276
- HTML全文浏览量: 36
- PDF下载量: 8
- 被引次数: 24