INFLUENCING FACTORS AND OPTIMIZATION ANALYSIS OF DENITRIFICATION RATE IN URBAN WASTEWATER TREATMENT PLANTS
-
摘要: 反硝化过程是影响污水处理厂出水总氮达标排放的重要环节之一,进水碳源、回流比、溶解氧(DO)和搅拌方式等均为影响活性污泥反硝化性能的重要因素。通过对太湖流域58座污水处理厂提标改造的运行效果进行评估分析,并对水质波动规律、工艺设计及设备设施等方面进行调研及优化分析,研究了不同条件对活性污泥反硝化速率的影响,探讨了污水处理厂在实际生产运行中反硝化脱氮过程主要存在的问题及对策。结果表明:各厂反硝化速率在0~5.18 mg NO3--N/(g VSS·h)时,平均反硝化速率为1.40 mg NO3--N/(g VSS·h),进水碳源浓度较低为各个污水处理厂反硝化速率较低的主要原因。其中外加碳源的种类、投加点位对反硝化脱氮具有较大的影响,在各厂进水中投加易降解碳源并保持较高的搅拌速率后,发现反硝化潜力为1.16~20.80 mg NO3--N/(g VSS·h),表明改善进水水质并创造较好的反硝化条件,有利于整体反硝化水平的提升。此外,充分的搅拌条件也可增强污泥的反硝化性能。另外,选择合适的内回流比可以有效强化生物反硝化脱氮性能,但内回流中高DO对反硝化影响较大,降低回流DO可以有效提高NO3--N去除量。Abstract: Denitrification is one of the important processes of wastewater treatment plant (WWTP). The carbon source, reflux ratio, DO and agitation method are all important factors affecting the denitrification. Fifty-eight WWTPs in Taihu Lake Basin were evaluated for upgrading operation, and the law of water quality fluctuation, process design and equipments were investigated and analyzed to explore the impact of different conditions on the denitrification rate of activated sludge, so as to provide basic data for the operation and management of high standard WWTPs in the future. The results showed that the denitrification rate was in the range of 0~5.18 mg NO3--N/(g VSS·h), among which the average denitrification rate was 1.40 mg NO3--N/(g VSS·h). The main reason for the low denitrification rate was the low concentration of carbon source in the influent. Among them, the type and location of the added carbon source had greater impact on nitrification and denitrification. It could also enhance the denitrification performance of sludge through adding appropriate carbon source and sufficient stirring conditions. When adding easily degradable carbon source in the influent of each WWTP and maintaining a relatively low concentration of carbon source in the influent, the denitrification potential was found to be 1.16~20.80 mg NO3--N/g VSS·h at a high agitation rate, which indicated that improving the quality of influent water and creating better denitrification conditions were conducive to the improvement of the overall denitrification level. Setting proper internal reflux ratio could effectively enhance the biological denitrification performance, however, high dissolved oxygen in internal reflux had greater effect on denitrification, and reducing the reflux dissolved oxygen could effectively promote the NO3--N removal.
-
Key words:
- denitrification /
- influent carbon source /
- reflux ratio /
- dissolved oxygen /
- agitation
-
马广文,香宝,银山,等. 长江流域农业区非点源氮的平衡变化及其区域性差异[J]. 环境科学研究, 2009, 22(2):132-137. 刘鹏霄,张捍民,王晓琳,等. MUCT-MBR工艺反硝化除磷脱氮研究[J]. 环境科学, 2009, 30(7):1995-2000. 何晓锋. 中小城镇高效低耗污水处理工艺的选择[J]. 化工管理, 2019, 4(20):37-42. WANG J F, WANG X, ZHAO Z G, et al. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2008,79(4):679-685. 黄潇. 多级AO-深床滤池工艺深度处理城市污水效能及微生物特征[D]. 哈尔滨:哈尔滨工业大学, 2019. 马娟,彭永臻,王丽,等. 温度对反硝化过程的影响以及pH值变化规律[J]. 中国环境科学, 2008, 4(11):1004-1008. 国家环保总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. KLEMEDTSSON L, SVENSSON B H, ROSSWALL T. Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification[J]. Biology and Fertility of Soils, 1988,6(2):106-111. 马娟,宋相蕊,李璐. 碳源对反硝化过程NO2-积累及出水pH值的影响[J]. 中国环境科学, 2014, 34(10):2556-2561. SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources:denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 26(7):416-425. 黄斯婷,杨庆,刘秀红,等. 不同碳源条件下污水处理反硝化过程亚硝态氮积累特性的研究进展[J]. 水处理技术, 2015, 41(7):21-25. YAMINI S, MALINI B. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent[J]. Journal of Hazardous Materials, 2009,170(1):457-465. E-UBAY ÇOKGÖR, SÖZEN S, ORHON D, et al. Respirometric analysis of activated sludge behaviour-I. Assessment of the readily biodegradable substrate[J]. Water Research, 1998, 32(2):461-475. 胡博,何珊,赵剑强,等. 搅拌速率对异养反硝化过程N2O产生过程的影响[J]. 环境科学与技术, 2016, 39(10):144-148. 湛雪辉,湛含辉,钟乐. 高浓度活性污泥中二次流传质效果的实验研究[J]. 矿冶工程, 2007, 27(3):37-40. 于海明,刘晶晶,翟计红,等. HRT对异养硝化好氧反硝化菌处理高速列车真空集便废水的影响[J]. 环境工程学报, 2014, 8(11):4715-4720. 马秋莹,李东,封莉,等. 前置反硝化生物滤池深度脱氮效能与影响因素[J]. 环境工程学报, 2017, 11(9):4932-4936. GIOVANNI D F. Carbon and nitrogen removal from low-strength domestic wastewater with a two-stage submerged biological filter[J]. Environmental Letters, 2007, 42(5):641-647. 王舜和,李朦,郭淑琴. 多级AO与多模式AAO工艺在污水厂的应用对比[J]. 中国给水排水, 2018, 34(10):48-51, 57. 李家驹,孙永利,秦松岩,等. 内回流混合液DO对缺氧池反哨化影响预测模型研究[J]. 中国给水排水, 2016, 32(21):119-121.
点击查看大图
计量
- 文章访问数: 706
- HTML全文浏览量: 71
- PDF下载量: 18
- 被引次数: 0