CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同预处理方法对污泥厌氧发酵产酸效果的影响

柯壹红 曾艺芳 李华藩 陈洁洁 吴春山 刘常青 郑育毅

柯壹红, 曾艺芳, 李华藩, 陈洁洁, 吴春山, 刘常青, 郑育毅. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程, 2020, 38(8): 21-26,12. doi: 10.13205/j.hjgc.202008004
引用本文: 柯壹红, 曾艺芳, 李华藩, 陈洁洁, 吴春山, 刘常青, 郑育毅. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程, 2020, 38(8): 21-26,12. doi: 10.13205/j.hjgc.202008004
KE Yi-hong, ZENG Yi-fang, LI Hua-fan, CHEN Jie-jie, WU Chun-shan, LIU Chang-qing, ZHENG Yu-yi. EFFECTS OF PRETREATED METHODS ON VOLATILE FATTY ACIDS PRODUCTION THROUGH SLUDGE ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 21-26,12. doi: 10.13205/j.hjgc.202008004
Citation: KE Yi-hong, ZENG Yi-fang, LI Hua-fan, CHEN Jie-jie, WU Chun-shan, LIU Chang-qing, ZHENG Yu-yi. EFFECTS OF PRETREATED METHODS ON VOLATILE FATTY ACIDS PRODUCTION THROUGH SLUDGE ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 21-26,12. doi: 10.13205/j.hjgc.202008004

不同预处理方法对污泥厌氧发酵产酸效果的影响

doi: 10.13205/j.hjgc.202008004
基金项目: 

福建省科技厅软科学研究(2019R0047);福建省科技厅公益类项目(2019R1015-1);福建省教育厅a类(jat170133);福建师范大学大学生创新训练计划项目(cxxl-2019255);福建师范大学大学生创新训练计划项目(cxxl-2019223)。

详细信息
    作者简介:

    柯壹红(1995-),女,研究生,主要研究方向为固体废物处理与资源化。1098005664@qq.com

    通讯作者:

    郑育毅(1974-),男,博士,教授级高工,主要研究方向为固体废物处理与资源化。332892742@qq.com

EFFECTS OF PRETREATED METHODS ON VOLATILE FATTY ACIDS PRODUCTION THROUGH SLUDGE ANAEROBIC FERMENTATION

  • 摘要: 预处理污泥厌氧发酵不仅可有效处理污泥,而且可产生挥发性脂肪酸(VFAs),实现污泥资源化利用。通过批式试验,探究酸(pH为3、4)、碱(pH为10、11)和低温(70,90 ℃)预处理条件下污泥厌氧发酵产酸效能。研究发现,在不同预处理污泥厌氧发酵过程中,VFAs的积累主要发生在发酵前24h,产酸效果表现为pH=11 > 90 ℃ > pH=10 > 70 ℃ > pH=3 > pH=4 > 控制组,碱处理产酸有较明显优势,酸处理效果最差。乙酸为VFAs的主要成分,pH=11组的乙酸浓度最高达到1232.31 mg/L,为控制组的5.2倍。甲烷产量在厌氧发酵后期逐步上升。考虑到嗜酸产甲烷菌对VFAs的消耗以及经济性,选取24 h为最佳发酵时间。
  • WANG D B, DUAN Y Y, YANG Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge[J]. Water Research, 2018, 133:272-281.
    YANG G J, WANG D B, YANG Q, et al. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal[J]. Chemosphere, 2018, 196:78-86.
    WANG L, LIU W Z, KANG L L, et al. Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(23):11913-11919.
    KUMAR G, PONNUSAMY V K, BHOSALE R R, et al. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production[J]. Bioresource Technology, 2019, 287:121427.
    ATASOY M, OWUSU-AGYEMAN I, PLAZA E, et al. Bio-based volatile fatty acid production and recovery from waste streams:Current status and future challenges[J]. Bioresource Technology, 2018, 268:773-786.
    LUO K, PANG Y, YANG Q, et al. A critical review of volatile fatty acids produced from waste activated sludge:enhanced strategies and its applications[J]. Environmental Science and Pollution Research, 2019, 26(14):13984-13998.
    BOUGRIER C, DELGENÈS J P, CARRÈRE H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge[J]. Biochemical Engineering Journal, 2007, 34(1):20-27.
    XUE Y G, LIU H J, CHEN S S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge[J]. Chemical Engineering Journal, 2015, 264:174-180.
    LIAO X C, LI H, ZHANG Y Y, et al. Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment[J]. International Biodeterioration & Biodegradation, 2016, 106:141-149.
    ZHANG D D, JIANG H L, CHANG J, et al. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production[J]. Bioresource Technology, 2019, 279:92-100.
    JASON D, DANIEL S, STEPHAN T, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18):4699-4709.
    YUAN H Y, CHEN Y G, ZHANG H X, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmontal Science and Technology, 2006, 40(6):2025-2029.
    MA H J, CHEN X C, LIU H, et al. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation:alkaline or neutral pH?[J]. Waste Management, 2016, 48:397-403.
    ZHAO J W, WANG D B, LIU Y W, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249:431-438.
    ATASOY M, EYICE O, SCHNURER A, et al. Volatile fatty acids production via mixed culture fermentation:Revealing the link between pH, inoculum type and bacterial composition[J]. Bioresource Technology, 2019, 292:121889.
    HUANG X F, MU T S, SHEN C M, et al. Effects of bio-surfactants combined with alkaline conditions on volatile fatty acid production and microbial community in the anaerobic fermentation of waste activated sludge[J]. International Biodeterioration & Biodegradation, 2016, 114:24-30.
    YUAN Y, LIU Y, LI B K, et al. Short-chain fatty acids production and microbial community in sludge alkaline fermentation:long-term effect of temperature[J]. Bioresource Technology, 2016, 211:685-690.
    CHEN Y G, LIU K, SU Y L, et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH[J]. Bioresource Technology, 2013, 140:97-102.
    ZHANG P, CHEN Y G, ZHOU Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions:effect of pH[J]. Water Research, 2009, 43(15):3735-3742.
    YUAN Y, WANG S Y, LIU Y, et al. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems[J]. Bioresource Technology, 2015, 197:56-63.
    WU L, ZHANG C, HU H, et al. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation:effect of acid or alkali pretreatment[J]. Bioresource Technology, 2017, 240:192-196.
    HUANG X, DONG W X, WANG H J, et al. Role of acid/alkali-treatment in primary sludge anaerobic fermentation:insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing[J]. Bioresource Technology, 2018, 249:943-952.
    WU H Y, GAO J Y, YANG D H, et al. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism[J]. Chemical Engineering Journal, 2010, 160(1):1-7.
    DEVLIN D C, ESTEVES S R, DINSDALE R M, et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5):4076-4082.
    李华藩,郑艳,叶枢华,等.污泥餐厨垃圾不同混配比厌氧发酵产氢产甲烷[J].福建师范大学学报(自然科学版),2020,36(4):50-56.
    MASUKO T, MINAMI A, IWASAKI N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical Biochemistry, 2005, 339(1):69-72.
    HARTREE E F. Determination of protein a modification of the Lowry method that gives a linear photometric response[J]. Analytical Biochemistry, 1972, 48(2):422-427.
    ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion:current advances, full-scale application and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2017, 69:559-577.
    RAJAN R V, LIN J G, RAY B T. Low level chemical pretreatment for enhanced sludge solubilization[J]. Journal of Environmental Sciences China, 1989, 61(11/12):1678-1683.
    BOUGRIER C, DELGENES J P, CARRERE H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion[J]. Chemical Engineering Journal, 2008, 139(2):236-244.
    MIRMASOUMI S, SARAY R K, EBRAHIMI S. Evaluation of thermal pretreatment and digestion temperature rise in a biogas fueled combined cooling, heat, and power system using exergo-economic analysis[J]. Energy Conversion and Management, 2018, 163:219-238.
    WANG X, LI Y, LIU J X, et al. Augmentation of protein-derived acetic acid production by heat-alkaline-induced changes in protein structure and conformation[J]. Water Research, 2016, 88:595-603.
    吴至成,吴琳等. pH对生物表面活性剂脂肽强化剩余污泥厌氧水解酸化的影响[J]. 环境工程学报, 2016, 10(7):3834.
    GAO X, ZHANG Q, ZHU H. High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation[J]. Bioresource Technology, 2019, 282:197-201.
    CASTRILLON L, VAZQUEZ I, MARANON E, et al. Anaerobic thermophilic treatment of cattle manure in UASB reactors[J]. Waste Manag Res, 2002, 20(4):350-356.
    HUANG X, SHEN C, LIU J, et al. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J]. Chemical Engineering Journal, 2015, 264:280-290.
    刘常青,陈细妹,林志龙,等. 碱预处理污泥厌氧发酵产氢研究[J]. 中国给水排水, 2017, 33(23):94-97.
    YANG D, DAI X, SONG L, et al. Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability[J]. Bioresource Technology, 2019, 290:121753.
    WANG D, HUANG Y, XU Q, et al. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge[J]. Bioresource Technology, 2019, 275:163-171.
  • 加载中
计量
  • 文章访问数:  184
  • HTML全文浏览量:  21
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02

目录

    /

    返回文章
    返回