BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH
-
摘要: 以生物质电厂灰为载体,用腐植酸对其改性后,负载石油烃降解菌形成固定化菌剂对原油污染土壤进行修复,其中对生物质电厂灰改性的最佳条件以及固定化菌剂对原油污染土壤的修复效果进行了考察。结果表明:生物质电厂灰改性的最佳条件为:电厂灰粒径10~40目,固液比1∶1,改性时间4 h,改性后孔状结构增多且表面粗糙,有利于微生物的附着,固定的微生物数量可达1.5×109 CFU/g。进行60 d的修复后,固定化菌剂对污染土壤中石油烃的降解率达到51.9%,比游离菌提高了25.0%,对长链正构烷烃、芳香烃及胶质的降解率分别提高了9.6%、31.7%和37.5%。固定化生物质电厂灰的应用使石油烃降解菌得到保护和支撑,提高了土壤基础呼吸速率和土壤酶活性,实现了石油烃的高效降解。因此,腐植酸改性生物质电厂灰是一种在石油污染土壤修复方面具有应用潜力的微生物固定化材料。Abstract: In this study, humic acid-modified biofuel ash was used as the carrier to immobilize the petroleum degrading bacteria for remediating the crude oil contaminated soil, and the best modification conditions of biofuel ash and the remediation effect of immobilized bacteria were investigated. The results showed that the optimum conditions of modified biofuel ash were: 10~40 mesh for the particle size, 1∶1 for the liquid ratio and 4 h for the modification time. After modification, the biofuel ash had rich pore-like structures and rough surface, which were favorable to the adsorption of bacteria and the immobilized number reached 1.5×109 CFU/g. After 60 days’ remediation, the removal efficiency of total petroleum hydrocarbon was 51.9%, which was higher than free bacteria by 25.0%, and the removal efficiency of long-chain n-alkanes, aromatic hydrocarbons and colloids was improved by 9.6%, 31.7% and 37.5%, respectively. The application of immobilized biofuel ash protected and supported the petroleum degrading bacteria, enhanced the basal respiration rate and the soil enzyme activity, thus achieved highly efficient degradation of petroleum hydrocarbon in soil. Therefore, humic acid-modified biofuel ash is a promising immobilization material in the field of petroleum contaminated soil remediation.
-
Key words:
- biofuel ash /
- immobilized microorganism /
- petroleum hydrocarbon /
- humic acid /
- contaminated soil
-
张珍明, 林昌虎, 何腾兵,等. 浅析石油污染土壤的微生物修复研究现状[J]. 贵州科学,2010,28(3):76-81. 李杨, 李凡修. 石油污染土壤的微生物修复技术[J]. 化工环保,2017,37(6):605-610. KULIK N, GOI A, TRAPIDO M, et al. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil[J]. Journal of Environmental Management,2006,78(4):382-391. SEMPLE K T, DOICK K J, JONES K C, et al. Peer reviewed:defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. Environmental Science and Technology,2004,38(12):228-231. BAYAT Z, HASSANSHAHIAN M, CAPPELLO S. Immobilization of microbes for bioremediation of crude oil polluted environments:a mini review[J]. The Open Microbiology Journal,2015,9:48-54. 王晓玲. 固定化技术提高微生物对土壤中石油烃降解性能研究进展[J]. 安徽农业科学,2018,46(30):13-17. DZIONEK A, WOJCIESZYN'SKA, DANUTA, GUZIK U. Natural carriers in bioremediation:a review[J]. Electronic Journal of Biotechnology, 2016, 19(5):28-36. 易珊. 生物质灰渣的资源化利用研究[D]. 杭州:浙江大学, 2014. 许鹏. 生物质电厂灰理化特性及火山灰活性试验研究[D]. 哈尔滨:黑龙江大学,2019. KUYUKINA M S, IVSHINA I B, KAMENSKIKH T N, et al. Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency[J]. International Biodeterioration & Biodegradation,2013,84:118-125. WANG H Q, HUA F, ZHAO Y C, et al. Immobilization of Pseudomonas sp. DG17 onto sodium alginate-attapulgite-calcium carbonate[J]. Biotechnology & Biotechnological Equipment,2014,28(5):834-842. CUBITTO M A, GENTILI A R. Bioremediation of crude oil-contaminated soil by immobilized bacteria on an agroindustrial waste-sunflower seed husks[J]. Bioremediation Journal,2015,19(4):277-286. 张秀霞, 韩雨彤, 张涵,等. 腐植酸对石油污染土壤特性和生物修复效果的影响[J]. 石油学报(石油加工),2016,32(1):178-183. CONTE P, AGRETTO A, SPACCINI R, et al. Soil remediation:humic acids as natural surfactants in the washings of highly contaminated soils[J]. Environmental Pollution,2005,135(3):515-522. 陶志慧, 章力干, 崔键,等. 生物质电厂灰等材料对红壤酸度和养分的改良效应[J]. 土壤通报,2015,46(4):899-904. 王思源, 申健, 李盟军,等. 不同改性生物炭功能结构特征及其对铵氮吸附的影响[J]. 生态环境学报,2019,28(5):1037-1045. 田秀梅, 王晓丽, 彭士涛,等. 乙酸改性苎麻纤维固定化微生物的石油污染修复研究[J]. 应用化工,2019,48(9):2045-2049. 齐永强, 王红旗, 刘敬奇. 土壤中石油污染物微生物降解及其降解去向[J]. 中国工程科学,2003,5(8):70-75. SUTTON N B, GAANS P V, LANGENHOFF A A M, et al. Biodegradation of aged diesel in diverse soil matrixes:impact of environmental conditions and bioavailability on microbial remediation capacity[J]. Biodegradation,2013,24(4):487-498. XIONG B J, ZHANG Y C, HOU Y W, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M.gilvum inoculated biochar[J]. Chemosphere,2017,182:316-324. 孔露露, 周启星. 新制备生物炭的特性表征及其对石油烃污染土壤的吸附效果[J]. 环境工程学报,2015,9(5):2462-2468. 倪妮, 宋洋, 王芳,等.多环芳烃污染土壤生物联合强化修复研究进展[J]. 土壤学报,2016, 53(3):3-13. EL-NAAS M H, AL-MUHTASEB S A, MAKHLOUF S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel[J]. Journal of Hazardous Materials,2009, 164(2/3):720-725. CHEN Y, YU B, LIN J J, et al. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material[J]. Chemical Engineering Journal,2016,289:463-470. 张秀霞, 武海杰, 白雪晶,等. 土壤修复过程中微生物数量、酶活性与石油降解率的关系[J]. 石油学报(石油加工), 2014, 30(1):94-99. 李政. 耐热石油降解混合菌群降解特性及多环芳烃共代谢作用的研究[D]. 青岛:中国石油大学(华东), 2012. KARINE J, LEBEAU T. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium[J]. Bioresource Technology,2008,99(4):690-698. 王威, 张玉玲, 马震,等. 石油类污染土壤基础呼吸作用的影响因素研究[J]. 科技导报, 2014, 32(7):67-70.
点击查看大图
计量
- 文章访问数: 172
- HTML全文浏览量: 34
- PDF下载量: 12
- 被引次数: 0