INFLUENCING FACTORS ANALYSIS OF LIPID PRODUCTION BY RHODOSPORIDIUM TORULOIDES USING CRUDE GLYCEROL, A BY-PRODUCT FROM BIODIESEL PREPARATION FROM WASTE COOKING OIL
-
摘要: 以餐饮废油制备生物柴油的副产物粗甘油为碳源,采用圆红冬孢酵母发酵生产微生物油脂。通过对发酵影响因素的优化,确定了最适发酵条件为:种子复苏时长24 h、富集时长10 h、接种量为6%、初始粗甘油浓度为60 g/L、C/N为60、有机氮占总氮比例为75%、发酵体积为100 mL、发酵温度为30 ℃、发酵时间为6 d,在此条件下,获得总产油量为10.56 g/L,油脂产率为0.229。与无机氮源硫酸铵相比,有机氮源蛋白胨的添加显著提高了油脂含量和总产油量。通过测定油脂的脂肪酸成分并利用Hoekman方程估算所得生物柴油的性能指标,表明其符合中国、美国及欧盟标准。该方法既为粗甘油的再利用提供了一条新途径,又为生物柴油的生产提供了廉价的原材料。Abstract: In this study, crude glycerol, a by-product in the process of biodiesel preparation from waste cooking oil, was used as carbon source to produce microbial lipid by Rhodosporidium toruloides. Through the optimization, the optimized fermentation conditions were determined as follows: seed resuscitation time of 24 h, enrichment time of 10 h, inoculation rate of 6%, initial crude glycerin concentration of 60 g/L, ratio of carbon to nitrogen of 60, organic nitrogen ratio to total nitrogen of 75%, fermentation volume of 100 mL, fermentation temperature of 30 ℃ and fermentation time of 6 d. Under the optimal condition, lipid production and lipid yield rate reached 10.56 g/L and 0.229, respectively. Compared with inorganic ammonium sulfate, the addition of organic peptone significantly increased the lipid content and lipid production. The performance of biodiesel was estimated by measuring the fatty acid composition of lipid and using Hoekman equation, which met all of the standards of China, the United States and the European Union. This study can not only provide a new strategy for the reutilization of crude glycerol, but also provide a economical raw material for the production of biodiesel.
-
Key words:
- microbial lipid /
- Rhadosporidium toruloides /
- crude glycerol /
- influence factors /
- aerobic fermentation
-
谷红宽,董晋湘. 生物柴油副产物粗甘油的提纯及其应用[C]//第三届(2010)中国油脂化工行业年会论文集, 昆明,2010. 李翠,刘慧. 生物柴油副产物甘油的去杂工艺条件研究[J]. 环境工程,2010,28(4):39-41. 柳杰,刘文慧,王晚晴, 等. 产油微生物及其发酵原料的研究进展[J]. 环境工程,2017,35(3):132-136. SARAN S, MATHUR A, DALAL J, et al. Process optimization for cultivation and oil accumulation in an oleaginous yeast Rhodosporidium toruloides A29[J]. Fuel, 2017,188:324-331. GAO Z, MA Y Q, MA X Y, et al. A novel variable pH control strategy for enhancing lipid production from food waste:biodiesel versus docosahexaenoic acid[J]. Energy Conversion and Management, 2019,189:60-66. HOEKMAN S K, BROCH A, ROBBINS C, et al. Review of biodiesel composition, properties, and specifications[J]. Renewable and Sustainable Energy Reviews, 2012,16(1):143-169. CHEN H, ZHENG Y L, ZHAN J, et al. Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism[J]. Biotechnology for Biofuels, 2017,10(1):120-153. TCHAKOUTEU S S, KOPSAHELIS N, CHATZIFRAGKOU A, et al. Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media:adaptation dynamics and lipid production[J]. Engineering in Life Sciences, 2017,17(3):237-248. ZHANG J, XU F, ZHU X L, et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture[J]. Biomass & Bioenergy, 2011,35(5):1906-1911. TAI M, STEPHANOPOULOS G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production[J]. Metabolic Engineering, 2013,15(Complete):1-9. KUAN I C, KAO W C, CHEN C L, et al. Microbial biodiesel production by direct transesterification of Rhodotorula glutinis biomass[J]. Energies, 2018,11(5):1036.
点击查看大图
计量
- 文章访问数: 173
- HTML全文浏览量: 40
- PDF下载量: 3
- 被引次数: 0