CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剩余污泥胞外聚合物回收:藻酸钠正渗透分离的影响因素

曹达啟 孙秀珍 方晓敏 靳景宜 杨晓璇 郝晓地

曹达啟, 孙秀珍, 方晓敏, 靳景宜, 杨晓璇, 郝晓地. 剩余污泥胞外聚合物回收:藻酸钠正渗透分离的影响因素[J]. 环境工程, 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012
引用本文: 曹达啟, 孙秀珍, 方晓敏, 靳景宜, 杨晓璇, 郝晓地. 剩余污泥胞外聚合物回收:藻酸钠正渗透分离的影响因素[J]. 环境工程, 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012
CAO Da-qi, SUN Xiu-zhen, FANG Xiao-min, JIN Jing-yi, YANG Xiao-xuan, HAO Xiao-di. RECOVERY OF EXTRACELLULAR POLYMERIC SUBSTANCE: IMPACT FACTORS IN FORWARD OSMOSIS SEPARATION OF SODIUM ALGINATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012
Citation: CAO Da-qi, SUN Xiu-zhen, FANG Xiao-min, JIN Jing-yi, YANG Xiao-xuan, HAO Xiao-di. RECOVERY OF EXTRACELLULAR POLYMERIC SUBSTANCE: IMPACT FACTORS IN FORWARD OSMOSIS SEPARATION OF SODIUM ALGINATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012

剩余污泥胞外聚合物回收:藻酸钠正渗透分离的影响因素

doi: 10.13205/j.hjgc.202008012
基金项目: 

北京"未来城市设计高精尖中心"项目;北京市高水平创新团队"传统村落保护与居民建筑功能提升关键技术研究项目"。

详细信息
    作者简介:

    曹达啟(1988-),男,工学博士,副教授,主要研究方向为膜分离技术、污水资源化以及痕量有机污染物迁移与转化。caodaqi@bucea.edu.cn

    通讯作者:

    曹达啟(1988-),男,工学博士,副教授,主要研究方向为膜分离技术、污水资源化以及痕量有机污染物迁移与转化。caodaqi@bucea.edu.cn

RECOVERY OF EXTRACELLULAR POLYMERIC SUBSTANCE: IMPACT FACTORS IN FORWARD OSMOSIS SEPARATION OF SODIUM ALGINATE

  • 摘要: 剩余污泥中胞外聚合物(EPS)具有巨大的回收价值。然而,回收的EPS溶液含水率接近100%,其浓缩脱水是亟待解决的关键问题。正渗透(FO)膜分离具有膜污染小、浓缩率高、耐高浓度等特点,已成为新兴的节能脱水技术。提出了一种新型的死端FO浓缩方式,调查了模拟EPS(藻酸钠)的正渗透脱水行为。结果显示:FO膜活性层朝向料液侧时水通量下降速率小;类似于外加压力驱动,扫流模式可以减轻FO膜污染,提高水通量;为防止FO膜的拉伸变形,隔板需进行合理设计(如适宜的开孔率),以缓解水通量的下降;不同于外加压力驱动,尽管Ca2+也可减轻膜污染,但效果有限。
  • VAN LOOSDRECHT M C M, BRDJANOVIC D. Anticipating the next century of wastewater treatment:Advances in activated sludge sewage treatment can improve its energy use and resource recovery[J]. Science, 2014, 344:1452-1453.
    CAO D Q, HAO X D, WANG Z, et al. Membrane recovery of alginate in an aqueous solution by the addition of calcium ions:analyses of resistance reduction and fouling mechanism[J]. Journal of Membrane Science, 2017, 535:312-321.
    CAO D Q, SONG X, HAO X D, et al. Ca2+-aided separation of polysaccharides and proteins by microfiltration:Implications for sludge processing[J]. Separation and Purification Technology, 2018, 202:318-325.
    CAO D Q, SONG X, FANG X M, et al. Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties[J]. Chemical Engineering Journal, 2018, 354:866-874.
    LIU H, FANG H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95:249-256.
    BOURVEN I, JOUSSEIN E, GUIBAUD G. Characterization of the mineral fraction in extracellular polymeric substances (EPS) from activated sludges extracted by eight different methods[J]. Bioresource Technology, 2011, 102:7124-7130.
    NOUHA K, KUMAR R S, BALASUBRAMANIAN S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation[J]. Journal of Environmental Sciences, 2018, 66:225-245.
    KIM N K, MAO N T, LIN R, et al. Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge[J]. Water Research, 2020, 170:115344.
    ROEST H V D, VAN LOOSDRECHT M C M, LANGKAMP E J, et al. Recovery and reuse of alginate from granular Nereda sludge[J]. Water, 2015, 21:48.
    SUN P F, ZHANG J H, ESQUIVEL-ELIZONDO S, et al. Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms[J]. Bioresource Technology, 2018, 248:56-60.
    CAO B D, ZHANG W J, DU Y J, et al. Compartmentalization of extracellular polymeric substances (EPS) solubilization and cake microstructure in relation to wastewater sludge dewatering behavior assisted by horizontal electric field:Effect of operating conditions[J]. Water Research, 2018, 130:363-375.
    PABBY A K, RIZVI S S H, SASTRE A M. Handbook of Membrane Separations:Chemical, Pharmaceutical, Food, and Biotechnological Applications[M]. CRC Press, Boca Raton, 2009.
    LI X, HE T, DOU P, et al. Forward osmosis and forward osmosis membranes[J]. Comprehensive Membrane Science & Engineering, 2017,2:95-123.
    孙秀珍,曹达啟,方晓敏,等. 胞外聚合物浓缩之正渗透膜分离特性[C]//2019年中国化工学会年会,青岛,2019.
    CAO D Q, YANG X X, YANG W Y, et al. Separation of trace pharmaceuticals individually and in combination via forward osmosis[J]. Science of the Total Environment, 2020, 718:137366(1-11).
    曹达啟,郝晓地,汪群慧,等. 一种新型正渗透浓缩方法及装置[P]. CN 201910619042.6.
    HONDA R, RUKAPAN W, KOMURA H, et al. Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture[J]. Bioresource Technology, 2015, 197:429-433.
    SEKER M, BUYUKSARI E, TOPCU S, et al. Effect of pretreatment and membrane orientation on fluxes for concentration of whey with high foulants by using NH3/CO2 in forward osmosis[J]. Bioresource Technology, 2017, 243:237-246.
    LIU F X, ZHANG H M, FENG Y J, et al. Influence of spacer on rejection of trace antibiotics in wastewater during forward osmosis process[J]. Desalination, 2015, 371:134-143.
  • 加载中
计量
  • 文章访问数:  132
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20

目录

    /

    返回文章
    返回