DEGRADATION OF HUMIC ACID IN WATER BY ULTRAVIOLET PHOTOCATALYSIS OF TiO2/GO COMPOSITE NANOMATERIALS
-
摘要: 采用溶胶凝胶法在最优煅烧温度(350℃)下,制备不同石墨烯(GO)负载比例的TiO2/GO复合光催化材料,通过SEM、XRD、Raman、FT-IR、TGA、BET等技术表征并分析材料的表面形貌、晶相结构、官能团与化学键合等特征,进而探究该复合材料在紫外光下对水中腐植酸(HA)的降解性能和机理。结果表明:随着石墨烯(GO)负载比例的增大,TiO2/GO复合催化剂粒径变小,比表面积增大,有层次的形貌空隙有效减小了团聚,提升了光生载流子迁移效率;Raman光谱中1350 cm-1和1600 cm-1的2处特征峰验证GO成功负载,且晶型仍以锐钛矿相为主;3%GO负载量的TiO2/GO光催化性能最优。当TiO2/3%GO投加量为0.5 g/L,水中HA初始浓度为10 mg/L时,在紫外光下催化反应1 h后降解率达到84.7%,其降解速率常数为0.0313 min-1。Abstract: In this paper, TiO2/GO composite photocatalysts were prepared through sol-gel method by using butyl titanate and different loads of graphene oxide as precursors, at the optimal calcination temperature (350℃). The structure and properties of TiO2/GO nanomaterials were characterized by SEM, XRD, Raman, FT-IR, TGA and BET. The degradation characteristic of humic acid (HA) in water by composite materials under UV light were analyzed. The results showed that the particle size of TiO2/GO composite catalyst was decreased, while the specific surface area was increased, the agglomeration effect was reduced and the photocatalytic efficiency was improved, with the increase of GO loading ratio. The two characteristic peaks of 1350 cm-1 and 1600 cm-1 in Raman spectrum indicated that the GO was successfully loaded in TiO2 nanomaterial, and the crystal type was mainly anatase. The composite material with 3%GO loaded performed best. When TiO2/3%GO dosage was 0.5 g/L and the initial HA concentration in water was 10 mg/L, the degradation rate under ultraviolet light reached 84.7% after 1 h of radiation, and the degradation rate constant was 0.0313 min-1.
-
Key words:
- TiO2 /
- GO /
- nanomaterial /
- ultraviolet photocatalysis /
- humic acid
-
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38. CAREYJ H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull Environment Contamination Toxicology, 1976, 16:697-701. 王丹, 赵利霞, 张辉, 等.二氧化钛光催化产生超氧自由基的形态分布研究[J]. 分析化学, 2017, 45(12):1882-1887. 吕鲲, 张庆竹. 纳米二氧化钛光催化技术与大气污染治理[J]. 中国环境科学, 2018, 38(3):852-861. 陈越, 何大伟, 王永生, 等. 水热法制备二氧化钛纳米管-石墨烯复合光催化剂及其光催化性能[J]. 发光学报, 2019, 40(2):177-182. 赵恬, 陈美延, 王仲锐, 等. TiO2粉末的制备和应用研究[J]. 山东化工, 2019, 48(3):40-41. 邵庆辉, 洪伟. 纳米TiO2光催化材料催化机理及其在环境污染防治中的应用研究[J]. 北方环境, 2011, 23(9):103-104. 李湄琳. 二氧化钛作为光催化剂的原理概述[J]. 生物化工, 2017, 3(6):94-96. SAKTHIVEL S,SHANKAR M V,PALANICHAMY M, et al. Enhancement of photocatalytic activity by metal depositions:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2, catalyst[J]. Water Research, 2004, 38(13):3001-3008. 张红博. 负载改性TiO2纳米复合催化剂的制备及光催化性能的研究[D]. 兰州:兰州理工大学, 2018. 王蔚琳. 碳纳米材料基复合光催化体系以及石墨烯量子点的简便制备及其性能研究[D]. 广州:华南理工大学, 2018. 罗金华. 纳米TiO2/GO复合材料制备及其光催化性能研究[J]. 钢铁钒钛, 2017, 38(5):53-59. 宋佩, 王琳. 石墨烯基光催化剂在水处理领域专利技术分析[J]. 中国发明与专利, 2018, 15(增刊2):46-53. 吴海培, 高晓红, 方婧, 等. TiO2/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12):78-83. 李洋, 梁莹, 刘洋, 等. 二氧化钛-氧化石墨烯复合物去除水中有机污染物的性能研究[J]. 水资源与水工程学报, 2018, 29(4):103-109. MOLEAA, POPESCUV, ROWSONNA,et al. Influence of pH on the formulation of TiO2 nano-crystalline powders with high photocatalytic activity[J]. Powder Technology, 2014(253):22-28. 林文娇. GO-TiO2复合光催化剂对两种典型VOCs的降解特性研究[D]. 上海:中国科学院大学(中国科学院上海硅酸盐研究所), 2018. 乔秀丽, 田军, 迟彩霞,等. 石墨烯/TiO2复合材料的可见光催化性能研究[J]. 应用化工, 2018, 47(8):1653-1657. DU X, QU F S, LIANG H, et al. Cake properties in ultrafiltration of TiO2 fine particles combined with HA:in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling[J]. Environmental Science and Pollution Research, 2016,23(9):8806-8818. MEHRDAD K, MNDJID M,TOM T, et al. Development of novel TiO2:sol-gel-derived composite and its photocatalytic activities for trichloroethylene oxidation[J]. Applied Catalysis B:Environmental, 2004, 53:209-219. 张彭义, 贾瑛. 光催化材料及其在环境净化中的应用[M]. 北京:化学工业出版社, 2016:24-32. 李旭, 赵卫峰, 陈国华. 石墨烯的制备与表征研究[J]. 材料导报, 2008(8):48-52. XIN X, ZHOU X F, WU J H, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano, 2012, 6(12):11035-11043. LONG M C, QIN Y L, CHEN C, et al. Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with graphene oxide[J]. Journal of Physical Chemistry C, 2013, 117(32):16734-16741. 李栋, 李贤宇, 李钒, 等. 石墨烯/二氧化钛复合光催化组件的制备及性能研究[J]. 工业安全与环保, 2018, 44(10):85-87. 郝欢欢, 刘晶冰, 李坤威, 等. 拉曼光谱表征石墨烯结构的研究进展[J]. 材料工程, 2018, 46(5):1-10. 谷溪, 柴涛, 高亚华. 三维多孔石墨烯/二氧化钛的制备及性能研究[J]. 应用化工, 2018, 47(1):126-130. EWELINA K N, ANTONI W M. TiO2/graphene-based nanocomposites for water treatment:a brief overview of charge carrier transfer, antimicrobial and photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 253:179-186.
点击查看大图
计量
- 文章访问数: 166
- HTML全文浏览量: 30
- PDF下载量: 6
- 被引次数: 0