MODIFICATION OF ACTIVATED CARBON PARTICLE ELECTRODE AND ITS ELECTROCATALYTIC PROPERTIES
-
摘要: 针对粒子电极电催化性能低、电能消耗大等问题,以柱状活性炭(AC)为载体,采用浸渍法制备负载金属的活性炭粒子电极,通过正交试验探究其最优制备条件,并应用Bohem返滴定法和SEM对改性活性炭进行表征。正交试验表明:粒子电极电催化性能受浸渍时间的影响比受浸渍浓度、焙烧时间、焙烧温度的影响更大。不同制备条件下的粒子电极形貌差异很大。在0.1 mol/L的浸渍液中浸渍12 h,400 ℃条件下焙烧4 h得到的粒子电极用于三维电极反应器中降解活性艳红X-3B,染料去除率达到85.97%,COD去除率达到65.61%,对比AC,染料去除率提高了5.29百分点,COD去除率提高了10.12百分点,能耗降低了13%。表明Ni/AC粒子电极可提高其电催化性能,降低能耗。Abstract: Aiming at the problems of low electrocatalytic performance and large power consumption of particle electrodes, metal-supported activated carbon particle electrodes were prepared by impregnation with columnar activity (AC) as the carrier. The optimal preparation conditions were explored by orthogonal experiments, and Bohem Back Titration Method and SEM were applied for characterization of modified activated carbon. The orthogonal experiments showed that the electrocatalytic performance of the particle electrode was affected by the impregnation time more than by the impregnation concentration, roasting time, and roasting temperature. Morphology of particle electrodes varied greatly under different preparation condition. The particle electrode immersed in a 0.1 mol/L immersion liquid for 12 h and then calcined at 400 ℃ for 4 h, using in the three-dimensional electrode reactor, had a removal rate of 86% for reactive brilliant red X-3B;the COD removal rate reached 66%. Compared with original activated carbon, the dye removal rate increase by 5.29 percents, the COD removal rate increase by 10.12 percents, and the energy consumption decrease by 13%. Ni/AC particle electrode could improve the electrocatalytic performance of metal modified activated carbon particles and reduce energy consumption.
-
陈红,李响,薛罡,等.当前印染废水治理中的关键问题[J].工业水处理,2015,35(10):16-19. 侯毓汾,朱振华.染料化学[M].北京:化学工业出版社,1994:178. 王爱民,杨立红,张素娟,等.电化学方法治理含染料废水的现状与进展[J].工业水处理,2001,21(8):4-7. HUANG C P, DONG C D, TANG Z H. Advanced chemical oxidation:its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993,13(5/6/7):361-377. CHEN Y, SHI W, XUE H M,et al. Enhanced electrochemical degradation of dinitrotoluene wastewater by Sn-Sb-Ag-modified ceramic particulates[J]. Electrochimica Acta,2011,58:383-388. ZHU X P, NI J R, XING X, et al.Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system[J]. Electrochimica Acta,2010,56(3):1270-1274. ZHAO H Z, SUN Y, XU L N,et al. Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor:removal mechanisms and dye degradation pathway[J]. Chemosphere,2010,78(1):46-51. LIU L, HE H H, ZHANG C, et al. Treatment of reverse osmosis concentrates using a three-dimensional electrode reactor[J]. Current Organic Chemistry,2012,16(18):2091-2096. 李沅知. 活性炭粒子电极改性及其三维电极反应器处理EDTA废水的研究[D].长沙:中南大学,2014. 张骞. 改性活性炭作粒子电极处理亚甲基蓝的研究[D].武汉:武汉大学,2017. SARAH L G,KIM D T,ALICIA M O, et al. Standardization of the Boehm titration. Part Ⅰ. CO2 expulsion and endpoint determination[J]. Carbon,2010,48(4):1252-1261. 王迪. 制备过程和表面改性对煤质活性炭官能团影响规律研究[D].北京:中国矿业大学,2014. WANG S, LU G Q. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon[J]. Carbon, 1998, 36(3):283-292. 李立清,梁鑫,石瑞等.酸改性活性炭对甲苯、甲醇的吸附性能[J].化工学报,2013,64(3):970-979. AMIT B,WILLIAM H,MARCIA M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal,2013,219:499-511. SHIM J W, PARK S J, RYU S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon, 2001, 39(11):1635-1642. GUO S L, ARAI M, NISHIYAMA Y. Activation of a silica-supported nickel catalyst through surface modification of the support[J]. Applied Catalysis, 1990, 65(1):31-44. 赖双苑.改性活性炭对饮用水中Ni2+的吸附研究[J].广东化工,2019,46(1):56-57. WIGMANS T, DOORN J V, MOULIJN J A. Deactivation of nickel during gasification of activated carbon, studied by X-ray photoelectron spectroscopy[J]. Surface Science Letters, 1983, 135(1/2/3):532-552. 廖寄乔,王占锋,周建伟.采用浸渍-还原法在炭纤维表面制备纳米镍催化剂颗粒[J].中南大学学报(自然科学版),2007,38(6):1033-1038. 魏金枝,张少平,胡琴,等.三维粒子电极处理染料废水的效能及机制[J].环境工程学报,2015,9(4):1715-1720. 蔡燕华. 活性炭粒子电极改性及处理含氮废水的研究[D].南京:南京航空航天大学,2012. 期刊类型引用(4)
1. 张袤,李祥,王军,袁砚,黄勇. GAC颗粒电极的改性制备及处理老龄垃圾渗滤液. 中国环境科学. 2024(12): 6796-6806 . 百度学术 2. 杨洋,马迁,李增辉,袁旭冬,魏平方,戴捷. N-Mn-TiO_2/AC粒子电极的制备及其降解性能研究. 工业水处理. 2023(11): 114-119 . 百度学术 3. 于攀,余健,谢建军. 三维电极技术在废水处理中的研究与应用进展. 现代化工. 2022(06): 78-82 . 百度学术 4. 胡鑫鑫,杨帅,尤欣雨,刘雨,张文文,梁文艳. Ni/GO_(0.2)-PAC_(0.8)粒子电极的制备及其降解Cu-EDTA络合物效能. 环境工程学报. 2021(09): 2922-2932 . 百度学术 其他类型引用(5)
点击查看大图
计量
- 文章访问数: 183
- HTML全文浏览量: 21
- PDF下载量: 2
- 被引次数: 9