CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电场控制的SMP与EPS分布和迁移

陈瑞华 侯彬 卢静 柴艳芳 宋旭涛 罗燚

陈瑞华, 侯彬, 卢静, 柴艳芳, 宋旭涛, 罗燚. 基于电场控制的SMP与EPS分布和迁移[J]. 环境工程, 2020, 38(8): 154-159. doi: 10.13205/j.hjgc.202008026
引用本文: 陈瑞华, 侯彬, 卢静, 柴艳芳, 宋旭涛, 罗燚. 基于电场控制的SMP与EPS分布和迁移[J]. 环境工程, 2020, 38(8): 154-159. doi: 10.13205/j.hjgc.202008026
CHEN Rui-hua, HOU Bin, LU Jing, CHAI Yan-fang, SONG Xu-tao, LUO Yi. SMP AND EPS DISTRIBUTION AND MIGRATION BASED ON ELECTRIC FIELD CONTROL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 154-159. doi: 10.13205/j.hjgc.202008026
Citation: CHEN Rui-hua, HOU Bin, LU Jing, CHAI Yan-fang, SONG Xu-tao, LUO Yi. SMP AND EPS DISTRIBUTION AND MIGRATION BASED ON ELECTRIC FIELD CONTROL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 154-159. doi: 10.13205/j.hjgc.202008026

基于电场控制的SMP与EPS分布和迁移

doi: 10.13205/j.hjgc.202008026
基金项目: 

国家自然科学基金项目(21806147,41977141,4140135);山西省自然科学基金项目(201801D121268,201601D202090)。

详细信息
    作者简介:

    陈瑞华(1994-),女,硕士,主要研究方向为新型水处理技术。164743329@qq.com

    通讯作者:

    侯彬(1983-),男,博士,副教授,主要研究方向为新型水处理技术。houbin566@163.com

SMP AND EPS DISTRIBUTION AND MIGRATION BASED ON ELECTRIC FIELD CONTROL

  • 摘要: 将微生物燃料电池(MFC)与膜生物反应器(MBR)进行耦合,构建了MFC-MBR一体化系统。基于MFC-MBR一体化系统,研究分析了MFC微电场对MBR膜组件周围溶解性微生物代谢产物(SMP)和胞外聚合物(EPS)的分布和迁移的影响。研究结果表明:MFC-MBR一体化系统可提供的最大输出电压为0.78 V。在此电场作用下,MBR的跨膜压差(TMP)达到30 kPa所需时间为14 d,比无外加电场所用时间长6 d。与此同时,扫描电镜显示:在长期运行后,有电场情况下,膜表面覆盖物较无电场少。通过对MBR膜组件周围SMP与EPS进行检测分析,发现在外加电场作用下,SMP与松散胞外聚合物(LB-EPS)会远离膜组件,其浓度会随着与膜组件距离的增加而增大;而紧密胞外聚合物(TB-EPS)不受电场影响,呈均匀分布状态。此外,SMP与LB-EPS在微电场作用下能够进行远离MBR膜表面的定向移动,从而可以有效减缓MBR膜污染,为MBR降低运行成本提供参考。
  • WANG Y F, JIA H, WANG J, et al. Impacts of energy distribution and electric field on membrane fouling control in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system[J]. Bioresource Technology, 2018, 269:339-345.
    WANG J, BI F H, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200:420-425.
    JOHIR M A, SHANMUGANATHAN S, VIGNESWARAN S, et al. Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium[J]. Bioresource Technology, 2013, 141:13-18.
    BANTI D C, SAMARAS P, TSIOPTSIAS C, et al. Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment[J]. Separation and Purification Technology, 2018, 202:119-129.
    WANG H, LI X F, WANG X H, et al. Insight into the distribution of metallic elements in membrane bioreactor:Influence of operational temperature and role of extracellular polymeric substances[J]. Journal of Environmental Sciences, 2019, 76:111-120.
    LIN H J, GAO W J, MENG F G, et al. Membrane bioreactors for industrial wastewater treatment:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):677-740.
    MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs):membrane fouling and membrane material[J]. Water Research, 2009, 43(6):1489-1512.
    WU Z C, WANG Z W, HUANG S S, et al. Effects of various factors on critical flux in submerged membrane bioreactors for municipal wastewater treatment[J]. Separation and Purification Technology, 2008, 62(1):56-63.
    毕芳华, 贾辉, 王捷, 等. 基于MFC电场强化的MBR膜污染控制[J]. 化工学报, 2015, 66(12):5103-5110.
    KHALID B M, MARIA E. Development of a novel submerged membrane electro-bioreactor (SMEBR):performance for fouling reduction[J]. Environmental Science & Technology, 2010, 44(9):3298-3304.
    LIU L F, LIU J D, GAO B, et al. Minute electric field reduced membrane fouling and improved performance of membrane bioreactor[J]. Separation and Purification Technology, 2012, 86:106-112.
    DAS S, GHANGREKAR M M. Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell[J]. Environmental Technology, 2019,41(7):1-8.
    PEIXOTO L, RODRIGUES A L, MARTINS G, et al. A flat microbial fuel cell for decentralized wastewater valorization:process performance and optimization potential[J]. Environmental Technology, 2013, 34(13/14):1947-1956.
    IZADI P, RAHIMNEJAD M. Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell[J]. Biofuel Research Journal, 2014,1(1):34-38.
    张政. MFC-MBR耦合系统处理含酚废水的运行条件优化[D]. 太原:中北大学, 2019.
    LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5):1022-1030.
    LI H, TIAN Y, SU X Y, et al. Investigation on SMP and EPS in membrane bioreactor combined with microbial fuel cells[J]. China Environmental Science, 2013, 33(1):49-55.
    郭昌梓, 于瑞娟, 强雅洁, 等. 不同污泥浓度下MFC去除有机物及产电性能的实验研究[J]. 陕西科技大学学报, 2019, 37(1):25-30

    ,65.
    DENG L J, GUO W S, NGO H H, et al. Membrane fouling reduction and improvement of sludge characteristics by bioflocculant addition in submerged membrane bioreactor[J]. Separation and Purification Technology, 2015, 156:450-458.
    程祯, 刘永军, 刘喆, 等. 好氧污泥强化造粒过程中EPS的分布及变化规律[J]. 环境工程学报, 2015, 9(5):2033-2040.
    张莉. 苯酚对膜生物反应体系中微生物代谢及膜污染的影响[D]. 苏州:苏州大学, 2011.
    刘阳, 张捍民, 夏杰, 等. 曝气强度对MBR活性污泥性质和膜污染的影响[J]. 中国科技论文, 2008, 3(5):314-319.
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14

目录

    /

    返回文章
    返回