中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米零价铁的制备技术及其应用研究进展

雍晓静 关翀 张昊 金政伟 姚敏

雍晓静, 关翀, 张昊, 金政伟, 姚敏. 纳米零价铁的制备技术及其应用研究进展[J]. 环境工程, 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003
引用本文: 雍晓静, 关翀, 张昊, 金政伟, 姚敏. 纳米零价铁的制备技术及其应用研究进展[J]. 环境工程, 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003
YONG Xiao-jing, GUAN Chong, ZHANG Hao, JIN Zheng-wei, YAO Min. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003
Citation: YONG Xiao-jing, GUAN Chong, ZHANG Hao, JIN Zheng-wei, YAO Min. RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 14-22. doi: 10.13205/j.hjgc.202009003

纳米零价铁的制备技术及其应用研究进展

doi: 10.13205/j.hjgc.202009003
基金项目: 

2018年宁夏回族自治区重点研发计划一般科技项目(2018BDE63020)。

详细信息
    作者简介:

    雍晓静(1978-),女,在读博士研究生,研究方向为煤化工技术开发及水资源利用。377748087@qq.com

    通讯作者:

    姚敏(1965-),男,博士,正高级工程师,研究方向为煤化工技术、固废综合利用及水处理等。15010247@chnenergy.com.cn

RESEARCH PROGRESS IN PREPARATION TECHNOLOGY AND APPLICATION OF NANO-ZERO-VALENT IRON

  • 摘要: 纳米零价铁(nZVI)因具有还原性强、粒径小、比表面积大等特性,对重金属及含卤有机污染物等具有良好的吸附特性和反应活性,在环境修复方面表现出较好的应用前景。但nZVI易氧化、团聚和机械强度低等不利因素限制了其大规模应用。系统比较了机械法、气体冷凝法及还原法制备nZVI技术的特点,重点总结表面改性、金属改性、载体负载和基质封装等手段制备改性nZVI的研究进展,及其在水体及土壤环境修复方面的应用。
  • 王世林,滕玮. 多孔材料负载型纳米零价铁的制备及其在环境中的应用进展[J]. 山东化工,2019,48(3):24-26.
    ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions:a review[J]. Environmental Science & Technology, 2016, 50(14):7290-7304.
    STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI):from synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287:618-632.
    周书葵,李智东,刘迎九,等. 纳米零价铁对铀尾矿库土壤中铀形态分布及固定效果的影响[J].环境工程学报,2019,13(7):1727-1734.
    江万权, 朱春玲, 陈祖耀, 等. 超细α-Fe粒子对磁性粒子浓悬浮体系磁流变性能的增强[J]. 化学物理学报, 2001, 14(5):630-633.
    MALOW T R, KOCH C C. Grain growth in nanocrystalline iron prepared by mechanical attrition[J]. Acta Materialia, 1997, 45(5):2177-2186.
    CAGNETTA G, HUANG J, LOMOVSKIY I O, et al. Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters[J]. Environmental Technology, 2017, 38(22):2916-2927.
    RIBAS D, PEŠKOVÁ K, JUBANY I, et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal, 2019, 366:235-245.
    AKHGAR B N, POURGHAHRAMANI P. Mechanochemical reduction of natural pyrite by aluminum and magnesium[J]. Journal of Alloys and Compounds, 2016, 657:144-151.
    HUANG D W, HE J, GU Y W, et al. Mechanochemically sulfidated zero valent iron as an efficient fenton-like catalyst for degradation of organic contaminants[J]. Acta Chimica Sinica, 2017, 75(9):866-872.
    郭晶晶. 蒙脱石/零价铁纳米复合材料修复水体重金属污染效率及机理研究[D]. 呼和浩特:内蒙古大学, 2014.
    李发伸, 杨文平, 薛德胜. 纳米铁微粒的制备及研究[J]. 兰州大学学报(自然科学版), 1994, 30(1):144-146.
    DE A, DE A K, PANDA G S, et al. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal:India[J]. Environmental Progress & Sustainable Energy, 2017, 36(6):1700-1708.
    JIA T T, WANG Z Z, SHAN H Q, et al. Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J]. Resources, Conservation and Recycling, 2017, 127:190-195.
    DING X Z, QI Z Z, HE Y Z. Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process[J]. Journal of Materials Science Letters, 1995, 14(1):21-22.
    WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7):2154-2156.
    GUSELNIKOVA O A, GALANOV A I, GUTAKOVSKII A K, et al. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles[J]. Beilstein Journal of Nanotechnology, 2015, 6(1):1192-1198.
    MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5):443-466.
    VALLE O M, DIAZ D, SANTIAGO J P, et al. Instantaneous synthesis of stable zerovalent metal nanoparticles under standard reaction conditions[J]. The Journal of Physical Chemistry B, 2008, 112(46):14427-14434.
    WANG X, LE L, ALVAREZ P J, et al. Synthesis and characterization of green agents coated Pd/Fe bimetallic nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50:297-305.
    LI D Y, ZHU J S, WU J H, et al. Development of an activated carbon-supported zero-valent iron catalyst (AC-Fe0) for enhancing degradation of reactive brilliant orange and reducing iron sludge production[J]. Environmental Progress & Sustainable Energy, 2016, 35(4):949-956.
    LAWRINENKO M, WANG Z J, HORTON R, et al. Macroporous carbon supported zerovalent iron for remediation of trichloroethylene[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2):1586-1593.
    HOCH L B, MACK E J, HYDUTSKY B W, et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology, 2008, 42(7):2600-2605.
    BYSTRZEJEWSKI M. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles[J]. Journal of Solid State Chemistry, 2011, 184(6):1492-1498.
    YOO B Y, HERNANDEZ S C, KOO B, et al. Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications[J]. Water Science and Technology, 2007, 55(1/2):149-156.
    ROZMAN K Z, PECKO D, TRAFELA S, et al. Austenite-martensite transformation in electrodeposited Fe70Pd30 NWs:a step towards making bio-nano-actuators tested on in vivo systems[J]. Smart Materials and Structures, 2018, 27(3):035018.
    TABAKOVIC I, VENKATASAMY V. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs=2.4-2.59 T) by reverse pulse electrodeposition[J]. Journal of Magnetism and Magnetic Materials, 2018, 452:306-314.
    HOAG G E, COLLINS J B, HOLCOMB J L, et al. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45):8671-8677.
    HERLEKAR M, BARVE S, KUMAR R. Plant-mediated green synthesis of iron nanoparticles[J]. Journal of Nanoparticles, 2014, 2014:1-9.
    MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron:column studies[J]. Desalination and Water Treatment, 2015, 56(5):1162-1170.
    MYSTRIOTI C, SPARIS D, PAPASIOPI N, et al. Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(3):302-307.
    MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Application of iron nanoparticles synthesized by green tea for the removal of hexavalent chromium in column tests[J]. Journal of Geoscience and Environment Protection, 2014, 2(4):28-36.
    CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201:33-42.
    WANG T, JIN X Y, CHEN Z L, et al. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466:210-213.
    WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution[J]. Journal of Cleaner Production, 2014, 83:413-419.
    TESH S J, SCOTT T B. Nano-composites for water remediation:a review[J]. Advanced Materials, 2014, 26(35):6056-6068.
    张瑾,魏才倢,白鸽,等. 多聚物吸附纳米零价铁在多孔介质中的迁移[J].中国环境科学,2018,38(10):3747-3754.
    张彬彬,王向宇. 柠檬酸改性核桃壳粉负载纳米零价铁的制备及EDTA优化去除四环素[J].环境工程学报,2018,12(12):3316-3323.
    TOSCO T, PAPINI M P, VIGGI C C, et al. Nanoscale zerovalent iron particles for groundwater remediation:a review[J]. Journal of Cleaner Production, 2014, 77:10-21.
    LIANG D W, YANG Y H, XU W W, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron:mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278:592-596.
    韩建江,李常锁,温春宇,等. 乳化纳米铁浆液在含水层中的迁移特征研究[J].中国环境科学,2018,38(6):2175-2181.
    LAUMANN S, MICIĆ V, HOFMANN T. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes[J]. Water Research, 2014, 50:70-79.
    LIN Y H, TSENG H H, WEY M Y, et al. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media[J]. Science of the Total Environment, 2010, 408(10):2260-2267.
    BONDER M J, ZHANG Y, KIICK K L, et al. Controlling synthesis of Fe nanoparticles with polyethylene glycol[J]. Journal of Magnetism and Magnetic Materials, 2007, 311(2):658-664.
    RAO J P, GRUENBERG P, GECKELER K E. Magnetic zero-valent metal polymer nanoparticles:current trends, scope, and perspectives[J]. Progress in Polymer Science, 2015, 40:138-147.
    WANG W, LI S L, LEI H, et al. Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide:Performance, characterization and implication[J]. Chemical Engineering Journal, 2015, 260:616-622.
    XIONG Z, ZHAO D Y, PAN G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles[J]. Water Research, 2007, 41(15):3497-3505.
    NAJA G, HALASZ A, THIBOUTOT S, et al. Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) using zerovalent iron nanoparticles[J]. Environmental Science & Technology, 2008, 42(12):4364-4370.
    DONG H R, XIE Y K, ZENG G M, et al. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron[J]. Chemosphere, 2016, 144:1682-1689.
    TIRAFERRI A, CHEN K L, SETHI R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum[J]. Journal of Colloid and Interface Science, 2008, 324(1/2):71-79.
    YAN W L, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up:recent developments and future outlook[J]. Environmental Science:Processes & Impacts, 2013, 15(1):63-77.
    AMEN T W M, ELJAMAL O, KHALIL A M E, et al. Wastewater degradation by iron/copper nanoparticles and the microorganism growth rate[J]. Journal of Environmental Sciences, 2018, 74:19-31.
    LEE S D, MALLAMPATI S R, Lee B H. Enhanced removal of ethanolamine from secondary system of nuclear power plant wastewater by novel hybrid nano zero-valent iron and pressurized ozone initiated oxidation process[J]. Environmental Science and Pollution Research, 2017, 24(21):17769-17778.
    KHALIL A M E, ELJAMAL O, SAHA B, et al. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system[J]. Chemosphere, 2018, 197:502-512.
    赵云,祝方,任文涛. 绿色合成纳米零价铁镍去除地下水中硝酸盐的动力学研究[J].环境工程,2018,36(7):71-76.
    WANG X Y, WANG T, MA J, et al. Synthesis and characterization of a new hydrophilic boehmite-PVB/PVDF blended membrane supported nano zero-valent iron for removal of Cr(Ⅵ)[J]. Separation and Purification Technology, 2018, 205:74-83.
    YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
    MA H L, QI X R, MAITANI Y, et al. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate[J]. International Journal of Pharmaceutics, 2007, 333(1/2):177-186.
    RAVIKUMAR K V G, KUMAR D, RAJESHWARI A, et al. A comparative study with biologically and chemically synthesized nZVI:applications in Cr (Ⅵ) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site[J]. Environmental Science and Pollution Research, 2016, 23(3):2613-2627.
    康海彦, 杨治广, 万园园. β-环糊精包埋纳米零价铁对Cd 2+的去除性能研究[J]. 环境工程, 2015,33(5):122-125.
    颜小星, 柳听义, 王中良. 壳聚糖-纳米零价铁球去除水中二价镉的研究[J]. 天津师范大学学报(自然科学版), 2014, 34(3):42-46.
    曾淦宁, 武晓, 郑林, 等. 负载纳米零价铁铜藻基活性炭的制备及其去除水中Cr (Ⅵ)的研究[J]. 环境科学, 2015, 36(2):530-536.
    何元渊, 祁彩菊, 仲万军, 等. 核桃壳负载纳米零价铁吸附废水中Pb2+[J]. 精细化工, 2014, 31(4):480-485.
    杨麒, 伍秀琼, 钟宇, 等. 活性炭负载纳米零价铁去除溴酸盐的研究[J]. 湖南大学学报(自然科学版), 2013, 40(12):97-102.
    KHALIL A M E, ELJAMAL O, AMEN T W M, et al. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water[J]. Chemical Engineering Journal, 2017, 309:349-365.
    ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J]. Journal of Hazardous Materials, 2009, 172(2/3):1591-1596.
    YUSMARTINI E S, FAIZAL M. Remediation of leachate by composite NZVI-activated carbon in packed column[C]. MATEC Web of Conferences. EDP Sciences, 2017, 101:02009.
    TENG W, FAN J W, WANG W, et al. Nanoscale zero-valent iron in mesoporous carbon (nZVI@C):stable nanoparticles for metal extraction and catalysis[J]. Journal of Materials Chemistry A, 2017, 5(9):4478-4485.
    SU C J, CAO G H, LOU S, et al. Treatment of cutting fluid waste using activated carbon fiber supported nanometer iron as a heterogeneous fenton catalyst[J]. Scientific Reports, 2018, 8(1):10650.
    CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343:619-628.
    LIAO R H, MIAO Y, HONG Y, et al. Nitrate reduction using nanoscale zero valent iron supported by porous suspended ceramsite[C]. Advanced Materials Research. Trans Tech Publications, 2013, 726:677-682.
    WANG Q M, REN G F, JIA F F, et al. Preparation and characterization of nanoscale zero-valent iron-loaded porous sepiolite for decolorizing methylene blue in aqueous solutions[J]. JOM, 2017, 69(4):699-703.
    CHI Z X, WANG Z, CHU H Q, et al. Bentonite-supported nanoscale zero-valent iron granulated electrodes for industrial wastewater remediation[J]. RSC Advances, 2017, 7(70):44605-44613.
    王顺利, 王秀红, 周新初, 等. 沸石-纳米零价铁的制备及其对溶液中Cu2+的吸附研究[J]. 农业环境科学学报, 2017, 36(3):583-590.
    CHI Z X, WANG Z, LIU Y, et al. Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater[J]. Chemical Engineering Journal, 2018, 331:317-325.
    LI G, XU Q Y, JIN X Y, et al. Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI[J]. Separation and Purification Technology, 2018, 197:401-406.
    LI Z T, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron:new findings on simultaneous adsorption of Cd(Ⅱ), Pb (Ⅱ), and As (Ⅲ) in aqueous solution and soil[J]. Journal of Hazardous Materials, 2018, 344:1-11.
    VILARDI G, OCHANDO-PULIDO J M, STOLLER M, et al. Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fixed-bed columns[J]. Chemical Engineering Journal, 2018, 351:1-11.
    刘宸, 李小燕, 刘晴晴, 等. 用负载纳米零价铁的改性沸石从溶液中去除U (Ⅵ)试验研究[J]. 湿法冶金, 2018,37(4):320-325.
  • 加载中
计量
  • 文章访问数:  926
  • HTML全文浏览量:  91
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09

目录

    /

    返回文章
    返回