EFFECT OF SHOAL WETLAND WATER DEPTH ON NITROGEN AND PHOSPHORUS REMOVAL AND ITS APPLICATION IN RIVER REGULATION
-
摘要: 研究了不同水深条件(5,10,15,20,25 cm)下芦苇湿地对伊通河水中氮、磷的净化能力。结果表明:浅水位条件有利于NH4+-N的硝化作用及挥发作用。水深为5 cm时TN和NH4+-N的去除效果最好,10 cm时NO3--N的去除效果最好,水深25 cm时TN和NH4+-N的去除率明显降低。NH4+-N的吸附和转化作用对TN的衰减起着主导作用。磷的去除率与水深的相关性较小,表明磷的去除主要是化学转化与吸附作用。根据湿地水深对污染物去除的影响,研究设计了1种可自动调节深度的浮动湿地。通过浮动湿地的净化,使研究区河水中TN、NH4+-N和TP浓度大幅降低,水质得到明显改善。Abstract: The removal efficiency of reed wetland under different water depth conditions (5, 10, 15, 20, 25 cm) to nitrogen and phosphorus in Yitong River was studied. The results showed that shallow water was conducive to the nitrification and volatilization of NH4+-N. The removal efficiency of TN and NH4+-N was much higher when water depth was 5 cm, and that of NO3--N was much better when water depth was 10 cm. However, the removal efficiency of TN and NH4+-N was significantly reduced when water depth was 25 cm. The adsorption and transformation of NH4+-N played a dominant role in the attenuation of TN. The correlation between phosphorus removal rate and water depth was relatively lower, indicating that phosphorus removal was mainly through chemical transformation and adsorption. According to the influence of water depth on pollutant removal in wetlands, a floating wetland with automatic depth adjustment was designed. The concentrations of TN, NH4+-N and TP in the river in the study area were obviously reduced by the floating wetlands, thus the water quality was improved.
-
Key words:
- wetland /
- reed /
- water depth /
- nitrogen /
- phosphorus /
- removal
-
孔皓. 上海市中小河道水生植物组织氮磷重金属含量与环境因子关系的研究[D]. 上海:上海海洋大学, 2017. 罗梅, 刘昔, 陈国梁, 等. 城市景观河道浮游植物与水质评价[J]. 环境工程学报, 2016, 10(12):7380-7386. 郭吟雪. 长春市伊通河水系生态治理工程项目管理研究[D]. 长春:吉林大学, 2018. 徐斌. 伊通河下游河段水环境容量评价研究[D]. 长春:吉林大学, 2018. 高越, 魏臻, 李莎, 等. 伊通河长春城区段底泥污染特征与评价[J]. 环境工程, 2018, 36(5):171-174,179. 顾晋饴, 陈融旭, 王弯弯, 等. 中国南北方城市河流生态修复技术差异性特征[J]. 环境工程, 2019, 37(10):67-72. 向衡, 韩芸, 潘瑞玲, 等. 潜流-垂直流改进型人工湿地处理河道水的研究[J]. 环境工程, 2015,33(3):60-64. 李云志. 基于水动力学模型的扎龙湿地水文情势模拟[D]. 哈尔滨:哈尔滨师范大学, 2019. 田旸. 基于Radarsat-2时间序列的湿地水文情势遥感监测与湿地分类[D].哈尔滨:哈尔滨师范大学, 2017. DIETRICH A L, NILSSON C, JANSSON R. Restoration effects on germination and survival of plants in the riparian zone:a phytometer study[J]. Plant Ecology, 2015, 216(3):465-477. 章光新, 郭跃东. 嫩江中下游湿地生态水文功能及其退化机制与对策研究[J]. 干旱区资源与环境, 2008, 22(1):122-128. 董文君, 曹学章, 胡丽丽. 白洋淀湿地生态需水量计算[J]. 能源及环境, 2011(11):23-25. SCHNEIDER C, FLÖRKE M, STEFANO L D, et al. Hydrological threats to riparian wetlands of international importance-a global quantitative and qualitative analysis[J]. Hydrology and Earth System Sciences, 2017, 21(6):2799-2815. 郭士林. 水位变化对水平潜流人工湿地氮素迁移转化的影响[D]. 上海:东华大学, 2017. 张广帅, 于秀波, 刘宇, 等. 鄱阳湖碟形湖泊植物分解和水位变化对水体碳、氮浓度的叠加效应[J]. 湖泊科学, 2018, 30(3):668-679. 张梦瑶, 王冬雪, 高永恒. 高寒湿地水体溶解性碳氮磷对水位变化的响应[J]. 环境科学与技术, 2017, 40(12):25-31. ZHANG X K, LIU X Q, DING Q Z. Morphological responses to water-level fluctuations of two submerged macrophytes, Myriophyllum spicatum and Hydrilla verticillata[J]. Journal of Plant Ecology, 2013, 6(1):64-70. 袁桂香, 吴爱平, 葛大兵, 等. 不同水深梯度对4种挺水植物生长繁殖的影响[J]. 环境科学学报, 2011, 31(12):2690-2697. 丁巧林, 徐菊芳, 余婷, 等. 水位变动对2种水生植物生长及生物量分配的影响[J].河北林业科技, 2014(1):1-3. SASIKALA S, TANAKA N, JINADASA K B S N. Effect of water level fluctuations on nitrogen removal and plant growth performance in vertical subsurface-flow wetland esocosms[J]. Journal of Freshwater Ecology, 2008, 23(1):101-112. SMITH R G B, BROCK M A. The ups and downs of life on the edge:the influence of water level fluctuations on biomass allocation in two contrasting aquatic plants[J]. Plant Ecology, 2007, 188(1):103-116. 仝欣楠, 王欣泽, 何小娟, 等. 人工芦苇湿地氨氮污染物去除及氨氧化菌群落多样性分析[J]. 环境科学研究, 2014, 27(2):218-224. 陈友媛, 孙萍, 陈广琳, 等. 滨海区芦苇和香蒲耐盐碱性及除氮磷效果对比研究[J]. 环境科学, 2015, 36(4):1489-1496. 巴图那生, 蔡舰, 周蕾, 等. 干旱地区芦苇湿地对氮、磷营养盐的去除效果及机制[J]. 环境工程, 2019, 37(4):38-42, 47. 国家环境保护总局, 水和废水监测分析方法编委会.水和废水监测分析方法[M].4版. 北京:中国环境科学出版社, 2002. 张翔凌,不同基质对垂直流人工湿地处理效果及堵塞影响研究[D]. 武汉:中国科学院研究生院(水生生物研究所), 2007. 刘永, 郭怀成, 周丰, 等. 湖泊水位变动对水生植被的影响机理及其调控方法[J]. 生态学报, 2006, 26(9):3117-3126.
点击查看大图
计量
- 文章访问数: 239
- HTML全文浏览量: 19
- PDF下载量: 16
- 被引次数: 0