中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同电子受体驯化聚糖菌反硝化过程及N2O释放特性

鞠洪海

鞠洪海. 不同电子受体驯化聚糖菌反硝化过程及N2O释放特性[J]. 环境工程, 2020, 38(9): 113-118. doi: 10.13205/j.hjgc.202009019
引用本文: 鞠洪海. 不同电子受体驯化聚糖菌反硝化过程及N2O释放特性[J]. 环境工程, 2020, 38(9): 113-118. doi: 10.13205/j.hjgc.202009019
JU Hong-hai. CHARACTERICS OF DENITRIFICATION AND N2O EMISSION OF ACCLIMATED GLYCOGEN ACCUMULATING ORGANISMS USING DIFERENT ELECTRON ACCEPTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 113-118. doi: 10.13205/j.hjgc.202009019
Citation: JU Hong-hai. CHARACTERICS OF DENITRIFICATION AND N2O EMISSION OF ACCLIMATED GLYCOGEN ACCUMULATING ORGANISMS USING DIFERENT ELECTRON ACCEPTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 113-118. doi: 10.13205/j.hjgc.202009019

不同电子受体驯化聚糖菌反硝化过程及N2O释放特性

doi: 10.13205/j.hjgc.202009019
基金项目: 

国家自然科学基金项目(51668031);烟职博士基金2018002号。

详细信息
    作者简介:

    鞠洪海(1971-),男,硕士,讲师。260943813@qq.com

CHARACTERICS OF DENITRIFICATION AND N2O EMISSION OF ACCLIMATED GLYCOGEN ACCUMULATING ORGANISMS USING DIFERENT ELECTRON ACCEPTOR

  • 摘要: 利用序批式(sequencing batch reactor,SBR)生物反应器,采用厌氧-好氧运行方式,以乙酸钠为碳源,在控制进水P/COD<2/100条件下,成功实现了聚糖菌(glycogen accumulating organisms,GAOs)富集。缺氧初始阶段ρ(NOx--N)为30.0 mg/L,经厌氧-缺氧驯化后,反硝化聚糖菌(denitrifuing GAOs,DGAOs)可利用聚-β-羟基脂肪酸酯(poly-β-hydroxyalkanoate,PHA)为内碳源进行反硝化,且分解利用的PHA中80%以上为聚-β-羟基丁酸酯(poly-β-hydroxybutyrate,PHB)。高浓度NO2-抑制DGAOs活性,厌氧PHA合成降低,且缺氧段PHA分解产生的能量较多地用于储存糖原(glycogen,Gly)。NO3-和NO2-还原过程中,PHA降解速率分别为19.28,10.02 mg/(g·h),内源反硝化速率分别为3.32,2.29 mg/(g·h),TN去除率达95%以上。随NO2-/NOx-增加,N2O平均产率由29.1%增至59.0%。高浓度NO2-对氧化亚氮还原酶(Nos)活性抑制作用以及Nos和亚硝态氮还原酶(Nir)之间的电子竞争过程,是导致NO2-内源反硝化过程中N2O大量释放的主要原因。
  • ZENG R J, YUAN Z G, KELLER J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering, 2003, 81(4):397-404.
    MIAO L, WANG S Y, LI B K, et al. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate[J]. Bioresource Technology, 2015, 192:354-360.
    刘小芳,郭海燕,张胜男,等. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019,70(3):1127-1134.
    ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008,42:8260-8265.
    YE L, NI B J, LAW Y Y, et al. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators[J]. Water Research, 2014, 48(1):257-268.
    PAN Y, NI B J, BONDP L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrifification in wastewater treatment[J]. Water Research, 2013,47:3273-3281.
    MCILROY S J, ALBERTSEN M, ANDRESEN E K, et al. "Candidatus Competibacter"-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. ISME J. 2014,8:613-624.
    YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater:main sources and control method[J]. Environmental Science & Technology, 2009,43(24):9400-9406.
    巩有奎, 王淑莹, 王莎莎, 等, 碳氮比对短程反硝化过程中N2O产生的影响[J]. 化工学报, 2011, 62(7):2049-2054.
    APHA(American Public Health Association). Standard Methods for the Examination of Water and Wastewater[S]. Baltimore:Port City Press, 1998.
    OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2):131-136.
    OEHMEN A, ZENG R J, YUAN Z G, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering, 2005, 91(1):43-53.
    贾淑媛, 王淑莹, 赵骥等, 驯化后的聚糖菌对NO2--N和NO3--N内源反硝化速率的影响[J].化工学报, 2017,68(12):4731-4738.
    RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology,2016,219:106-113.
    张建华, 彭永臻, 张淼,等. 不同电子受体配比对反硝化除磷特性及内碳源转化利用的影响[J].化工学报,2015,66(12):5045-5053
    崔有为,金常林,王好韩,等. 碳源对O/A-F/F模式积累内源聚合物及反硝化的影响[J].环境科学,2019,40(1):336-342
    WANG Y, GENG J, GUO G, et al. N2O production in anaerobic/anoxic denitrifying phosphorus removal process:the effects of carbon sources shock[J]. Chemical Engineering Journal,2011,172(2/3):999-1007
    ZHU X, CHEN Y. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid[J]. Environental Science & Technology, 2011,45:2137-2143
    MIAO L, WANG S Y, LI B K, et al. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate[J]. Water Research, 2016, 100:405-412.
    WEI Y, WANG S Y, MA B, et al. The effect of poly-b-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system[J]. Bioresource Technology,2014, 170:175-182.
  • 加载中
计量
  • 文章访问数:  197
  • HTML全文浏览量:  11
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-25

目录

    /

    返回文章
    返回