EFFECT OF AMMONIA-NITROGEN CONCENTRATION ON MICROBIAL COMMUNITY STRUCTURE IN A MBBR PROCESS
-
摘要: 采用移动床生物膜反应器(moving bed biofilm reactor,MBBR)处理模拟废水,考察进水氨氮浓度(20,30,50,100,200 mg/L)对MBBR工艺处理效果的影响,并利用16S rDNA高通量测序技术,分析微生物群落结构变化。结果表明:氨氮浓度为30~100 mg/L时,氨氮浓度越小,越有利于氨氮的去除,对COD去除率影响较小。氨氮浓度为20,50,200 mg/L时,Ottowia为第1优势菌属,相对丰度分别为66.76%、34.40%、53.88%,而氨氮浓度为30,100 mg/L时,Ottowia优势地位被Arcobacter、Hydrogenophaga等取代,说明微生物群落结构发生波动性变化可能与各类起反硝化作用的菌属和Ottowia菌属争夺优势地位有关。与自养型硝化作用有关的菌属相对丰度稳定在0.3%左右,相对丰度受氨氮浓度影响不大,高浓度氨氮对硝化菌属产生的抑制作用,可能是对其微生物活性的抑制。通过研究发现,进水氨氮浓度对MBBR生物膜中的微生物群落结构有一定的影响。Abstract: Moving bed biofilm reactor (MBBR) was used to treat simulated wastewater. The effect of ammonia-nitrogen concentration (20, 30, 50, 100, 200 mg/L) on the treatment efficiency of MBBR was investigated. By using 16S rDNA high-throughput sequencing technique, the changes in the microbial community structure of MBBR under different ammonia-nitrogen concentration were analyzed. The results indicated that the lower ammonia-nitrogen concentration, the more beneficial for the removal of ammonia nitrogen, but the less impact on the removal of COD, when ammonia-nitrogen concentration was 30~100 mg/L. When ammonia-nitrogen concentration was 20, 50 and 200 mg/L, Ottowia was the top dominant bacterial genus, whose relative abundances were 66.76%, 34.40%, 53.88%, respectively. When ammonia-nitrogen concentration was 30, 100 mg/L, Ottowia was replaced by Arcobacter, Hydrogenophag, etc. The fluctuation of microbial community structure may be related to the competition for dominant position between various denitrifying bacteria and Ottowia. The relative abundance of autotrophic nitrification bacteria was stable at about 0.3%, which was not affected by ammonia nitrogen concentration. The inhibiting effect of high concentration ammonia nitrogen on nitrifying bacteria might be due to the inhibition of their microbial activity. The influent ammonia-nitrogen concentration affected the microbial community structure in MBBR biofilm.
-
宋周兵,于薇.碳氮磷比失调对污水生物脱氮除磷的影响[J].四川环境,2008,27(6):73-76. THOMAS H, MURRER J. Fouling characteristics of membrane filtration in membrane bioreactors[J]. Membrane Technology, 2000, 122(6):10-13. BRINK A, SHERIDAN C M, HARDING K G. A kinetic study of a mesophilic aerobic moving bed biofilm reactor (MBBR) treating paper and pulp mill effluents:the impact of phenols on biodegradation rates[J]. Journal of Water Process Engineering, 2017,19:35-41. 杨文焕,唐若凯,肖作义,等.多级MBBR与A2/O工艺处理低C/N生活污水对比分析[J].环境科学与技术,2017,40(9):131-135. 赵青,卞伟,李军,等.DO/NH4+-N调控实现MBBR工艺生活污水短程硝化[J].中国环境科学,2017,37(12):4511-4517. 熊建英.MBBR+磁混凝工艺用于污水处理厂提标改造[J].中国给水排水,2018,34(20):50-55. 李志静,孙宝盛,张笑雪,等.不同供氧策略和氨氮浓度下SBR中微生物群落的演变[J].环境工程学报,2017,11(1):359-365. 田美,刘汉湖, 申欣.基于新一代测序技术的A2/O与BIOLAK活性污泥宏基因组比较分析[J]. 环境科学, 2016(2):638-646. SOGIN M L, MORRISON H G, HUBER J A, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere"[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32):12115-12120. ANDREAS S, KRAUSE L, SZCZEPANOWSKI R, et al. Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant[J]. Journal of Biotechnology, 2008, 136(1/2):65-76. HU M, WANG X H, WEN X H, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012, 117:72-79. ZHANG X, SHU M, WANG Y, et al. Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture[J]. World Journal of Microbiology and Biotechnology, 2014, 30(9):2523-2531. 吴敏. MBBR活性污泥微生物群落演替规律的研究[D].长沙:湖南大学,2013. 郑晓英,乔露露,王慰,等.碳源对反硝化生物滤池运行及微生物种群的影响[J].环境工程学报,2018,12(5):1434-1442. 杨婧.邻苯二甲酸酯降解菌的降解特性与土壤应用研究[D].广州:华南理工大学,2018. 方舟.人工湿地型微生物燃料电池同步降解偶氮染料与产电的特性及机理[D].南京:东南大学,2017. 张婷婷. 污水生物脱氮中进水碳氮比对N2O释放的影响及其减量化控制[D].济南:山东大学,2012. 蔡丽云,黄泽彬,须子唯,等.处理垃圾渗滤液的SBR中微生物种群与污泥比阻[J].环境科学,2018,39(2):880-888. THOMSEN T R, KONG Y, NIELSEN P H. Ecophysiology of abundant denitrifying bacteria in activated sludge[J]. Fems Microbiology Ecology, 2010, 60(3):370-382. 石芳永,宋奔奔,傅松哲,等.竹子填料海水曝气生物滤器除氮性能和硝化细菌群落变化研究[J]. 渔业科学进展,2009,30(1):92-96. HILL V R, KAHLER A M, JOTHIKUMAR N, et al. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples[J]. Applied & Environmental Microbiology, 2007, 73(13):4218-4225. Martinezgarcia M, Swan B K, Poulton N J, et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton[J]. The ISME Journal, 2012, 6(1):113-123. SPRING S, JÄCKEL U, WAGNER M, et al. Ottowia thiooxydans gen. nov. sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(1):99-106. 曹军伟. 焦化废水中酚类降解菌及其降解机制的初步研究[D].武汉:华中农业大学,2012. FELFÖLDI T, KÉKI Z, SIPOS R, et al. Ottowia pentelensis sp. nov. a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(9):2146-2150. 刘钊,姜枫,党岩,等.氨氮对A/O2 MBBR处理垃圾焚烧渗沥液厌氧出水的影响[J].环境工程学报,2016,10(8):3986-3992. 熊晓丽,杨宏,唐美丽,等.生物除锰滤池自养菌的分离与鉴定[J]. 中国水运(下半月), 2009, 9(4):265-266.
点击查看大图
计量
- 文章访问数: 180
- HTML全文浏览量: 25
- PDF下载量: 12
- 被引次数: 0