CHARACTERIZATION OF CONDENSABLE PARTICULATE MATTER EMITTED FROM A TYPICAL COKING PLANT IN IRON AND STEEL PLANT
-
摘要: 钢铁焦化厂可凝结颗粒物(CPM)对大气细颗粒物(PM2.5)的贡献不容忽视,然而目前关于焦化厂CPM排放特征的认识仍很不清楚。采用稀释间接法对焦化厂烟气中CPM的排放进行了测试,对其在脱硫入口和总排放口的浓度及化学组成进行了系统分析。发现在焦化脱硫入口和总放排口CPM浓度分别为9.5,1.2 mg/m3,是可过滤细颗粒物(FPM2.5)浓度的14,4倍。CPM中占比最高的为水溶性离子,主要为Cl-和K+;其次为有机物。脱硫入口处CPM中有机组分以烯烃类、环烷烃类、烷烃类等为主,总排放口则以醇类、烯烃类、酚类等为主。采用"碳酸氢钠干法脱硫+袋式除尘器+中低温选择性催化还原脱硝"烟气净化技术路线对CPM气态前体物有一定的协同去除能力,CPM去除率为87.3%。Abstract: Condensable particulate matter (CPM) contributes considerably to the fine particles (PM2.5) emitted from coking plant in iron and steel plants. However, the emission characteristics of CPM from coking plants are still unclear. In this study, indirect dilution method was applied to collect the CPM emitted from coking plant. The concentrations and chemical compositions of CPM at the flue gas desulfurization inlet and the stack were analyzed systematically. The concentrations of CPM at the flue gas desulfurization inlet and the stack were 9.5 mg/m3 and 1.2 mg/m3, respectively, which were 14 times and 4 times of fine filterable particulate matter (FPM2.5), respectively. The most dominant constituents in CPM at the flue gas desulfurization inlet and the stack were water-soluble ions of Cl- and K+, and then organic components. The organic constituents in CPM were mainly alkenes, cyclanes, alkanes at the flue gas desulfurization inlet and alcohols, alkenes, phenols at the stack. The comined process, dry desulfurization with sodium bicarbonate-fabric filter-selective catalytic reduction under medium and low temperature could remove a certain amount of condensable gaseous pollutants synergistically, with a removal rate for CPM of 87.3%.
-
WANG X Y, LEI Y, YAN L, et al. A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015[J]. Science of the Total Environment, 2019, 676:18-30. HLEIS D, FERNANDEZ-OLMO I, LEDOUX F, et al. Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant[J]. Journal of Hazardous Materials, 2013, 250/251:246-255. KONG S F, JI Y Q, LI Z Y, et al. Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from stationary sources based on dilution sampling[J]. Atmospheric Environment, 2013, 77:155-165. TSAI J H, LIN K H, CHEN C Y, et al. Chemical constituents in particulate emissions from an integrated iron and steel facility[J]. Journal of Hazardous Materials, 2007, 147(1/2):111-119. JIUN-HORNG T, KUO-HSIUNG L, CHIH-YU C, et al. Volatile organic compound constituents from an integrated iron and steel facility[J]. Journal of Hazardous Materials, 2008, 157(2/3):569-578. YANG H H, LAI S O, HSIEH L T, et al. Profiles of PAH emission from steel and iron industries[J]. Chemosphere, 2002, 48(10):1061-1074. KHALILI N R, SCHEFF P A, HOLSEN T M. PAH source fingerprints for coke ovens, diesel and gasoline-engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 1995, 29(4):533-542. 蒋靖坤, 邓建国, 李振, 等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5):2018-2024. 裴冰. 固定源排气中可凝结颗粒物排放与测试探讨[J]. 中国环境监测, 2010, 26(6):9-12. 裴冰. 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学, 2015, 36(5):1544-1549. CORIO L A, SHERWELL J. In-stack condensible particulate matter measurements and issues[J]. Journal of the Air & Waste Management Association, 2000, 50(2):207-218. WANG G, DENG J G, MA Z Z, et al. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China[J]. Science of the Total Environment, 2018, 639:695-704. YANG H H, LEE K T, HSIEH Y S, et al. Filterable and condensable fine particulate emissions from stationary sources[J]. Aerosol and Air Quality Research, 2014, 14(7):2010-2016. USEPA. Method 202-Dry impinger method for determining condensable particulate emissions from stationary sources[S]. USEPA:Washington, D.C., 2010. 蒋靖坤, 邓建国, 王刚, 等. 固定污染源可凝结颗粒物测量方法[J]. 环境科学, 2019(12):5234-5239. WANG G, DENG J G, ZHANG Y, et al. Evaluating airborne condensable particulate matter measurement methods in typical stationary sources in China[J]. Environmental Science & Technology, 2020,54(3):1363-1371. YANG H H, LEE K T, HSIEH Y S, et al. Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants[J]. Aerosol and Air Quality Research, 2015, 15(4):1672-1680. International Organization for Standardization (ISO). Stationary source emissions-test method for determining PM2.5 and PM10 mass in stack gases using cyclone samplers and sample dilution. ISO 25597:2013[S]. ISO:Geneva, Switzerland, 2013. 李妍菁, 邓建国, 王刚, 等. 固定源可凝结颗粒物稀释采样器的设计[J]. 环境科学学报, 2020,40(5):1656-1660. 温斌, 宋宝华, 孙国刚, 等. 钢铁烧结烟气脱硝技术进展[C]//2017年烧结烟气脱硝及综合治理技术交流研讨会, 临汾, 2017. JI Z Y, GAN M, FAN X H, et al. Characteristics of PM2.5 from iron ore sintering process:influences of raw materials and controlling methods[J]. Journal of Cleaner Production, 2017, 148:12-22. TSUKADA M, NISHIKAWA N, HORIKAWA A, et al. Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion[J]. Powder Technology, 2008, 180(1/2):140-144.
点击查看大图
计量
- 文章访问数: 227
- HTML全文浏览量: 44
- PDF下载量: 11
- 被引次数: 0