REVIEW AND OUTLOOK OF AFTERTREATMENT TECHNOLOGIES TO SATISFY ULTRA-LOW EMISSION REGULATIONS FOR HEAVY-DUTY DIESEL ENGINES
-
摘要: 柴油机排放污染物控制是全球应对大气环境恶化问题的重要解决方案之一。美国加利福尼亚州在2019年率先发布了针对超低排放要求的白皮书,建议将重型柴油机的NOx排放继续降低90%,即最低达到0.027 g/(kW·h)。针对未来超低排放法规的技术要求,全球相关机构开展了大量的研发和试验工作,有效推动了排放控制技术的升级。从发动机后处理零部件的角度,总结了国内外相关文献及研究成果,提出发动机和后处理技术需联动升级,在加强发动机热管理的同时,降低原机NOx排放。重点介绍了潜在的后处理技术解决方案,如NOx吸附脱附技术和紧耦合SCR技术等控制低温NOx排放的关键技术,灰分管理和PN控制相关的DPF控制技术,以及电加热催化器和燃烧器等可能应用于后处理系统的热管理技术,并对相关技术的优劣势进行了分析。Abstract: Emission control of heavy-duty (HD) diesel engines is one of the focuses to reduce the air pollution. California Air Resources Board (CARB) had taken the action on issuing a white paper to further limit the emission of heavy-duty vehicles, which especially suggested reducing the NOx emission to maximum 90% based on EPA2010 legislation (0.027 g/(kW·h)). To satisfy the ultra-low emission requirements, global related research institutes carried on a lot of tasks to explore the potential pathway for the future heavy duty after-treatment solutions. To some extent, these actions purged the upgradation of emission legislation around the world, including Europe and China. This paper reviewed the current status of HD diesel engine emission control and available approaches for future emission control obtained from published materials and author's study from the point of aftertreatment component. Thermal management and emission control system should be considered together during the engine design. The paper compared different solutions such as passive NOx absorber(PNA)/close-coupled SCR(cc-SCR)/SCR on Filter(SCRF) in NOx control, ash management and PN emission in DPF control, electrical heated catalyst (EHC)/diesel burner in aftertreatment temperature control.
-
Key words:
- heavy-duty diesel engine /
- emission legislation /
- aftertreatment system /
- particulate matter /
- NOx
-
生态环境部.中国机动车环境管理年报(2018)[R].北京:中华人民共和国生态环境部,2018. CARB releases feasibility assessment of low NOx standards for HD diesel engines[EB/OL]. https://www.dieselnet.com/news/2019/04carb2.php.[2019-4-23]. Giechaskiel B, Manfredi U, Martini G. Engine exhaust solid sub-23 nm particles:Ⅰ. literature survey[C/OL]. https://saemobilus.sae.org/content/2014-01-2834/.2014-01-2834. 生态环境部. 车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国第六阶段):GB 17691-2018[S]. Commission Regulation (EU) 2016/1718[S]. US Environmental Protection Agency Final Rule. Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium-and Heavy-Duty Engines and Vehicles-Phase 2[S].Federal Register, 81(206), 73478-74274. GAO Z, DEAN D, DAVID S, et al. Engine-aftertreatment in closed-loop modeling for heavy duty truck emissions control[C/OL]. https://saemobilus.sae.org/content/2019-01-0986/.2019-01-0986. CHIGADA P, WATLING T C, CLEETON J P, et al. Experimental and modelling study of cold start effects on a Cu-zeolite NH3 selective catalytic reduction catalyst[C/OL]. https://saemobilus.sae.org/content/2015-01-2011/.2015-01-2011. MARIO M, STEFAN M, NOLL H, et al. SCR control strategies with multiple reduction devices for lowest NOx emissions[C]//2018 SAE HDD Emissions Control Symposium, Sweden, 2018. SHARP C, WEBB C C, NEELY G, et al. Achieving ultra low NOx emissions levels with a 2017 heavy-duty on-highway TC diesel engine and an advanced technology emissions system-thermal management strategies[C/OL]. https://saemobilus.sae.org/content/2017-01-0954/.2017-01-0954. SHARP C, WEBB C C, YOON S, et al. Achieving ultra low nox emissions levels with a 2017 heavy-duty on-highway TC diesel engine-comparison of advanced technology approaches[C/OL]. https://saemobilus.sae.org/content/2017-01-0956/.2017-01-0956. SHARP C, WEBB C C, NEELY G, et al. Achieving ultra low NOx emissions levels with a 2017 heavy-duty on-highway TC diesel engine and an advanced technology emissions system-thermal management strategies[C/OL]. https://saemobilus.sae.org/content/2017-01-0958/.2017-01-0958. HENDRICKSON C S, UPADHYAY D, VAN NIEUWSTADT M. Selective catalytic reduction control with multiple injectors[C/OL]. https://saemobilus.sae.org/content/2017-01-0943/.2017-01-0943. HARRIS T M, PHERSON K M, REZA REZAEI, et al. Modeling of close-coupled SCR concepts to meet future cold start requirements for heavy-duty engines[C/OL]. https://saemobilus.sae.org/content/2019-01-0984/.2019-01-0984. DAHODWALA M, JOSHI S, KOEHLER E W, et al. Strategies for meeting phase 2 GHG and ultra-Low NOx emission standards for heavy-duty diesel engines[C/OL]. https://saemobilus.sae.org/content/2018-01-1429/.2018-01-1429. SEYKENS X, KUPPER F, MENTINK P, et al. Towards ultra-low NOx emissions within GHG phase 2 constraints:main challenges and technology directions[C/OL]. https://saemobilus.sae.org/content/2018-01-0331/.2018-01-0331. CHEN H Y, MULLA S, WEIGERT E, et al. Cold start concept (CSCTM) a novel catalyst for cold start emission control[C/OL]. https://saemobilus.sae.org/content/2013-01-0535/.2013-01-0535. 帅石金, 唐韬, 赵彦光, 等. 柴油车排放法规及后处理技术的现状与展望[J]. 汽车安全与节能学报, 2012, 3(3):200-217. TAYLOR M, KANEDA A, KAI R, et al. Development of improved SCRonDPF design for future tighter regulations and reduced system packaging[C/OL]. https://saemobilus.sae.org/content/2018-01-0344/.2018-01-0344. TSINOGLOU D N, HARALAMPOUS O A, KOLTSAKIS G C, et al. Model-based optimization methods of combined DPF+SCR Systems[C/OL]. https://saemobilus.sae.org/content/2007-24-0098/.2007-24-0098. SCHRADE F, BRAMMER M, SCHAEFFNER J, et al. Physico-chemical modeling of an integrated SCR on DPF(SCR/DPF) system[C/OL]. https://saemobilus.sae.org/content/2012-01-1083/.2012-01-1083. OLOWOJEBUTU S, STEFFEN T. A review of the literature on modelling of integrated SCR-in-DPF systems[C/OL]. https://saemobilus.sae.org/content/2017-01-0976/.2017-01-0976. 韩峰, 王晓华, 王意宝. 双级尿素-选择性催化还原系统对柴油机排放特性的影响研究[J]. 内燃机工程,2019, 40(3):41-45. STROTS V, REZA R. Technology approaches for meeting future emission requirements for commercial vehicles[C]//2018 SAE HDD Emissions Control Symposium, Sweden, 2018. WURZENBERGER J C, KUTSCHI S, NIKODEM A. Ash transport and deposition, cake formation and segregation-a modeling study on the impact of ash on particulate filter performance[C/OL]. https://saemobilus.sae.org/content/2019-01-0988/.2019-01-0988. SAPPOK A, WONG V. Ash effects on diesel particulate filter pressure drop sensitivity to soot and implications for regeneration frequency and DPF control[C/OL]. https://saemobilus.sae.org/content/2010-01-0811/.2010-01-0811. BAGI S, SINGH N, ANDREW R. Investigation into ash from field returned DPF units:composition, distribution, cleaning ability and DPF performance recovery[C/OL]. https://saemobilus.sae.org/content/2016-01-0928/.2016-01-0928. BAGI S, BOWKER R, ANDREW R. Understanding chemical composition and phase transitions of ash from field returned DPF units and their correlation with filter operating conditions[C/OL]. https://saemobilus.sae.org/content/2016-01-0898/.2016-01-0898. OHARA E, MIZUNO Y, MIYAIRI Y, et al. Filtration behavior of diesel particulate filters[C/OL]. https://saemobilus.sae.org/content/2007-01-0921/.2007-01-0921. YAMADA H. PN emissions from heavy-duty diesel engine with periodic regenerating DPF[C/OL]. https://saemobilus.sae.org/content/2013-01-1564/.2013-01-1564. LIU X, SZENTE J, PAKKO J, et al. Using artificial ash to improve GPF performance at zero mileage[C/OL]. https://saemobilus.sae.org/content/2019-01-0974/. 2019-01-0974. SURENAHALLI H S, BACKHAUS J, LIU Q, et al. Experimental study of impact of ash and soot on tail pipe particle number[C/OL]. https://saemobilus.sae.org/content/2019-01-0976/.2019-01-0976. BEATRICE C, COSTAGLIOLA M A, GUIDO C, et al. How much regeneration events influence particle emissions of DPF-equipped vehicles?[C/OL]. https://saemobilus.sae.org/content/2017-24-0144/.2017-24-0144. MARTIN P. New challenges on EuVI filter technologies with introduction of PN PEMS in ISC testing[C]//SAE HDD Emissions Control Symposium. Sweden.2018. HARRIS T M, GARDNER T. Modeling of aftertreatment technologies to meet a future HD Low-NOx standard[C/OL]. https://saemobilus.sae.org/content/2019-01-0043.2019-01-0043. LEAHEY N, CRAWFORD R, DOUGLAS J, et al. Induction heating of catalytic converter systems and its effect on diesel exhaust emissions during cold start[C/OL]. https://saemobilus.sae.org/content/2018-01-0327/.2018-01-0327. CULBERTSON D, KHAIR M, ZHA Y, et al. Exhaust heating system performance for boosting SCR low temperature efficiency[C/OL]. https://saemobilus.sae.org/content/2018-01-1428/.2018-01-1428.
点击查看大图
计量
- 文章访问数: 271
- HTML全文浏览量: 52
- PDF下载量: 7
- 被引次数: 0