DISCUSSION ON DEVELOPMENT OF HEAT RECOVERY TECHNOLOGY FOR HIGH TEMPERATURE MOLTEN SLAG
-
摘要: 我国高温熔渣年产生量超过6亿t,其热资源价值巨大,但浪费情况严重。对干法粒化、化学法、冷却水余热利用、直接制备产品4种熔渣热能利用技术进行了论述探讨。熔渣热能回收技术的应用离不开熔渣资源利用,综合经济效益最大化是热能利用技术应用的关键因素。对于高温熔渣热回收技术建议如下:针对活性物料含量低的熔渣采用干法粒化、化学法进行热能回收;活性物料含量高的熔渣,在确保熔渣产品活性的条件下进行热能回收技术开发;因地制宜地进行冲渣冷却水余热利用;解决熔渣直接制备产品的关键工艺技术难点,提质降本;加强熔渣液固转变矿物结构变化过程的研究,实现固化渣的矿物组成调控。Abstract: In China, the annual output of high temperature molten slag is higher than 6×108 t, which has a great value of heat. However, by now, most of heat resource can not be recovered. In this paper, four heat recovery technologies, including dry granulation, chemical method, waste heat utilization of cooling water and production using molten slag as the raw material, were discussed. The key factor for the application of heat recovery technology was the maximum utilization and economic efficiency. To recover heat resource, dry granulation and chemical method were adopted to treat the molten slag with lower content of active materials. Whereas, molten slag containing higher content of active materials needed to be treated without decreasing slag activity. Furthermore, waste heat utilization of cooling water could be adopted according to the actual condition. The difficulties in production using molten slag as the raw material should be overcome, which is beneficial for increasing the quality and decreasing the cost of the product. Finally, the structure variation during the liquid-solid transformation of molten slag should be further researched, contributing to realize the control of the mineral composition of solidified slag.
-
Key words:
- molten slag /
- heat recovery /
- dry granulation /
- resource utilization
-
赵芸芬.全球粗钢生产消费回顾及展望[N].世界金属导报,2019-05-07(A07). 《中国统计年鉴》编辑委员会.中国统计年鉴[M].2018. 吴博伟.铁合金的行业现状及发展趋势[J].冶金与材料,2019,39(1):166-167. 齐渊洪,干磊, 王海风,等.高炉熔渣余热回收技术发展过程及趋势[J].钢铁,2012,47(4):1-8. 蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁,2007,42(6):1-7. KUN-MOLEE,PIL-JUPARK.Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA[J].Resources,Conservation and Recycling,2005,44(2):139-151. JOJI A,SEIGO T,FUMIO I,et al.Development of a BOF slag blast granulating and heat recovering system[J].Technical Review:Mitsubishi Heavy Industries,1981,18(2):133-142. JOJI A,HIROSHI O,TAKAFUMI N,et al.Development of slag blast granulating plant characterized by innovation of the slag treatment method,heat recovery[J].Technical Review:Mitsubishi Heavy Industries,1985,22(2):136-148. 侯利.液态钢渣改性气淬系统分析[J].信息系统工程,2015(10):43. 卢宏伟,李俊国,张玉柱.气淬渣滴冷却过程数值模拟研究[J].钢铁钒钛,2012,33(3):28-33. YOSHINAGA M, FUJII K, SHIGEMATSU T,et al.Dry granulation and solidification of molten blast furnace slag[J].Transactions ISIJ,1982,22(11):823-829. SCHOTT H K.Method and a device for processing hot liquid slags[P].US Patent,US5255900,1993. 严定鎏, 郭培民,齐渊洪.高炉渣干法粒化技术的分析[J].钢铁研究学报,2008,20(6):11-13. 王东.高温液态炉渣机械离心粒化机理及关键技术研究[D].青岛:青岛理工大学,2018:32-46. KENNY W F.Energy conservation in process industries[M].Orlando:Academic Press.1984:13-19. NILLS T.Heat Recovery from Molten Slag,a New Swedish Granulation Technique[M]//New Energy Conservation Technologies and Their Commercialization.Berlin:Springer Cerlag.1981. 路俊萍.熔渣干法粒化集成热能回收工艺的工业试验[N].世界金属导报,2015-11-24(B10). HARRIS J C,WARNER N A.Dry Granulation and heat recovery from partly solidified slag droplets[J].Steel Times,1986,214(11):626-633. BISIO G.Energy recovery from molten slag and exploitation of recovered energy[J].Energy,1997,22(5):501-509. TANI Y.New Energy Conservation Technologies[M].Berlin Springer,1981. KASAI E,KITAJIMA T,AKIYAMA T,et al. Rate of methane-steam reforming reaction on the surface of molten BF slag for heat recovery from molten slag by using a chemical reaction[J].ISIJ International,1997,37(10):1031-1036. SHIMADA T,KOCHURA V,AKIYAMA T,et al.Effects of slag compositions on the rate of methane steam reaction[J].ISIJ International,2001,41(2):111-115. MIZUOCHI T,AKIYAMA T,SHIMADA T.Feasibility of rotary cup atomizer for slag granulation[J].ISIJ International,2001,41(12):1423-1428. 刘宏雄.利用高炉熔渣作热载体进行煤气化的探讨[J].节能,2004(6):41-43. 陶寿松,谢其湘,张新华.高炉冲渣余热利用分析和展望[J].冶金动力,2018(9):51-54. 熊超,史君杰,翁雪鹤.我国钢铁工业余热余能发电现状分析[J].中国钢铁业,2017(9):14-17. 郝以党,吴龙.钢渣辊压破碎余热有压热闷处理及发电新技术[A].2017高效、低成本、智能化炼钢共性技术研讨会[C].山东潍坊:河北金属学会,2017:367-372. 胡小媛,蒋伟中.日本岩矿棉、玻璃棉生产应用技术及市场考察报告[R].北京:中国绝热隔音材料协会,2006:31-33. 杨铧.高炉熔渣显热的高效利用:新一步法矿棉技术获得成功[J].节能与环保,2003(2):34-35. 唐续龙,张梅,郭敏,等.矿物棉纤维的非等温析晶动力学研究[J].北京科技大学学报,2011,33(12):1523-1528. 龙跃,杜培培,张良进,等.各因素对离心高炉渣纤维性能及成纤效果的影响[J].钢铁研究学报,2017,29(7):530-535. 毕艳国,孙韶华,刘旭权.高炉热熔渣制取矿棉的工艺研究与实践[C]//固废热熔渣岩矿棉生产技术交流会暨全国保温材料科技信息协会2017年年会. 银川:全国保温材料科技信息协会,2017:43-48. 吴伟.高炉热态熔渣直接生产矿棉工艺技术的探讨[J].宝钢技术,2016,29(4):49-52. 白智韬,邱桂博,彭犇,等.高碳铬铁渣基微晶玻璃体系调控分析[J].环境工程,2019,37(1):158-163. 赵贵州,李宇,代文彬,等.钢渣基高碱度微晶玻璃的一步法制备及工艺参数研究[J].工程科学学报,2016,38(2):207-212.
点击查看大图
计量
- 文章访问数: 426
- HTML全文浏览量: 19
- PDF下载量: 13
- 被引次数: 0